
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

A study of on-chip FPGA system with 2D mesh
network
Ka-ming Keung
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Keung, Ka-ming, "A study of on-chip FPGA system with 2D mesh network" (2010). Graduate Theses and Dissertations. 11251.
https://lib.dr.iastate.edu/etd/11251

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F11251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11251?utm_source=lib.dr.iastate.edu%2Fetd%2F11251&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

A study of on-chip FPGA system with 2D mesh network

by

Ka-Ming Keung

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Akhilesh Tyagi, Major Professor

Soma Chaudhuri
Chris (Chong-Nuen) Chu

Arun K Somani
Zhao Zhang

Iowa State University

Ames, Iowa

2010

Copyright c© Ka-Ming Keung, 2010. All rights reserved.

www.manaraa.com

ii

DEDICATION

For those who give me academical, mental and financial supports for my Phd study.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . x

ACKNOWLEDGEMENTS . xiv

ABSTRACT . xv

CHAPTER 1. INTRODUCTION . 1

1.1 Motivation for an advanced router . 2

1.1.1 A need for an adaptive router . 2

1.1.2 A need for a multicast router . 3

1.1.3 A need for an adaptive multicast router 4

1.1.4 A need for a multicast router supporting unary code, binary code and

code transformation . 5

1.1.5 A need for a multicast deadlock free router 6

1.2 Motivation for an on-chip system built by many FPGAs with the on-chip network 6

1.2.1 A need to place system modules as close as possible 7

1.2.2 A need for sharing system modules among co-processors 8

1.2.3 A need for an on-chip system with polymorphic modules 9

1.3 Thesis Organization . 10

CHAPTER 2. REVIEW OF LITERATURE 11

2.1 On-chip Network . 11

2.2 Router architecture . 12

2.2.1 Pipelined On-chip Router . 15

www.manaraa.com

iv

2.2.2 Store-and-Forward, Virtual cut-through and Wormhole Routing 15

2.3 Deterministic and Adaptive Routing . 16

2.4 Unicast and Multicast . 20

2.5 Deadlock . 20

2.5.1 Unicast Deadlock . 20

2.5.2 Multicast Deadlock . 21

CHAPTER 3. Path-Based Adaptive Routing 24

3.1 Motivation . 24

3.2 Basic Unicast Router . 25

3.2.1 Input Buffer . 26

3.2.2 Virtual Channel Allocator . 28

3.2.3 Switch Allocator . 30

3.3 Path-Based Adaptive Routing . 33

3.3.1 Congestion Estimation . 33

3.3.2 Adaptive Unicast Route Decision . 34

3.4 Experiments . 39

3.4.1 Synthetic Traffic . 39

3.4.2 Simulation Parameters . 40

3.4.3 Path-Based Adaptive Unicast Routing Experiments 40

3.4.4 Path-based Adaptive Routing Observation Window Size 47

CHAPTER 4. Adaptive Multicast Router . 53

4.1 Motivation . 53

4.2 Adaptive Multicast Decoder . 53

4.3 Dynamic Multicast Packet Divergence Point Selection 55

4.4 Adaptive Multicast Route Decision . 55

4.4.1 Region Identification . 56

4.4.2 Route Lookup Table . 57

4.5 Avoiding Multicast Deadlock By Address Data FIFO Decoupling 60

www.manaraa.com

v

4.6 The Micro-architecture Changes from the unicast router 67

4.6.1 Five output FIFO . 67

4.6.2 Multicast Adaptive Input Buffer . 68

4.6.3 Experiments . 69

CHAPTER 5. Dual-coded Multicast Router with Dynamic Code Translation 70

5.1 Motivation . 70

5.2 Multicast Code Transformation . 73

CHAPTER 6. Multicast Experiments and Hardware Implementations . . . 76

6.1 Experimental Setup . 76

6.1.1 Synthetic Traffic . 76

6.1.2 Simulation Parameters . 76

6.2 Multicast Routers Experiment . 76

6.2.1 Synthetic Traffics . 76

6.2.2 Comparison between Unicast Router and Multicast Routers 77

6.2.3 Video System on FPGAs with 2D Mesh Network 84

6.3 Address-Data Decoupling Experiment . 87

6.3.1 Synthetic Traffics . 88

6.3.2 Video System on FPGAs with 2D Mesh Network 90

6.3.3 Hardware Implementations . 93

CHAPTER 7. An On-chip System Built from Many FPGAs with a 2D

Mesh Network . 96

7.1 Motivation . 96

7.2 Architecture of an on-chip FPGA system with a 2D Mesh Network 97

7.3 Protocols . 99

7.4 Co-Processor Computing Model . 100

7.5 On-chip Video FPGA System . 102

CHAPTER 8. A Basic Co-processor Placer 106

8.1 Motivation . 106

www.manaraa.com

vi

8.2 Algorithm . 107

8.3 Experiments . 110

8.3.1 Experimental Setup . 110

CHAPTER 9. A Co-processor Placer For The Sharable CLB Groups 114

9.1 Motivation . 114

9.2 CLB Group Sharing . 114

9.3 Full Tile Sharing and Bottleneck Aware Sharing 115

9.4 Experiments . 117

9.4.1 Experimental Setup . 117

9.4.2 Number of Sharers . 121

9.4.3 Comparison between Full Tile Sharing (FTS) and Bottleneck Aware

Sharing (BAS) . 121

CHAPTER 10. Polymorphic Modules Placement 122

10.1 Motivation . 122

10.2 Throughput Expectation . 122

10.3 Experiment . 123

CHAPTER 11. Conclusions . 126

BIBLIOGRAPHY . 131

www.manaraa.com

vii

LIST OF TABLES

Table 3.1 Input Buffer Signals . 28

Table 3.2 Virtual Channel Allocator Signals . 30

Table 3.3 Switch Allocator Signals . 32

Table 3.4 Six routes from location (2,2) to location (0,4) 34

Table 3.5 Congestion Status Wire Comparison 39

Table 3.6 Baseline simulation parameters . 40

Table 3.7 Unicast Maximum Throughput and Packet Arrival Time Comparison

(Uniform Traffic) . 41

Table 3.8 Unicast Maximum Throughput and Packet Arrival Time Comparison

(Transpose Traffic) . 42

Table 3.9 Unicast Maximum Throughput and Packet Arrival Time Comparison

(Transpose2 Traffic) . 43

Table 3.10 Unicast Average Co-processing Runtime Comparison (Video System) . 45

Table 3.11 Unicast Average Co-processor Runtime Comparison (Video System) . 46

Table 3.12 Range Test: Maximum Throughput and Packet Arrival Time Compar-

ison (Uniform Traffic) . 48

Table 3.13 Range Test: Maximum Throughput and Packet Arrival Time Compar-

ison (Transpose Traffic) . 49

Table 3.14 Range Test: Maximum Throughput and Packet Arrival Time Compar-

ison (Transpose2 Traffic) . 50

Table 3.15 Range Test: Average Co-processor Runtime Comparison (Video System) 52

Table 4.1 Quadrant Route Target Table . 59

www.manaraa.com

viii

Table 5.1 Packet Address Coding Scheme Comparison 72

Table 6.1 Baseline simulation parameters . 77

Table 6.2 Multicast Router Maximum Throughput 78

Table 6.3 Multicast Router Packet Latency . 80

Table 6.4 Multicast Router Flits Energy Consumption (pJ) 81

Table 6.5 Multicast Routers Comparison (Video on-chip system using FPGA) . . 85

Table 6.6 Virtual Cut-Through and Wormhole Routing Comparison (Maximum

Throughput (Data Flits)) . 88

Table 6.7 Virtual Cut-Through and Wormhole Routing Comparison (Average

Packet Latency Per Data Flit (Cycles)) 89

Table 6.8 Virtual Cut-Through andWormhole Routing Comparison (Energy Con-

sumption per Data Flit (pJ)) . 90

Table 6.9 Virtual Cut-Through Router and Wormhole Router Comparison (Video

on-chip system using FPGA) . 92

Table 6.10 Area and Cycle Time Data . 95

Table 7.1 Packet Type . 100

Table 7.2 Video Server Modules . 103

Table 8.1 Notation . 109

Table 8.2 Baseline simulation parameters . 111

Table 8.3 Average Bitstream and Data Network Energy per Co-processing 111

Table 8.4 Comparison between non-reviving (NR) and reviving (R) the pre-existing

tiles . 112

Table 8.5 Placement Comparison . 112

Table 8.6 Idle Tiles Result . 113

Table 9.1 Notation . 117

Table 9.2 Baseline simulation parameters . 120

www.manaraa.com

ix

Table 9.3 Full Tile Sharing (FTS) . 120

Table 9.4 Bottleneck Aware Sharing (BAS) . 120

Table 10.1 Polymorphic On-Chip System Simulation Parameters 124

Table 10.2 Polymorphic Module Placement . 125

www.manaraa.com

x

LIST OF FIGURES

Figure 1.1 XY-Routing Congestion Problem . 3

Figure 1.2 Unicast and Multicast Buffer Write Comparison 4

Figure 1.3 XY and Adaptive Multicast Buffer Write Comparison 5

Figure 1.4 On-chip system built by FPGA with 2D Mesh network 7

Figure 1.5 Placements Comparison . 8

Figure 1.6 Module Sharing (a) Two Task Graphs, (b) Two Mapped Task Graphs 9

Figure 2.1 Data Flow From the Source to the Destination 11

Figure 2.2 System On Chip with 2D Mesh On chip Network 12

Figure 2.3 Physical Channel Blocking Problem . 13

Figure 2.4 Solving Blocking problem by Virtual Channel 13

Figure 2.5 Packet Format . 15

Figure 2.6 DyXY adaptive routing . 17

Figure 2.7 Regional Congestion Aware adaptive routing 18

Figure 2.8 Unicast Deadlock . 21

Figure 2.9 Multicast Deadlock Example . 22

Figure 2.10 X+, X-, Y+, Y- Zones . 22

Figure 2.11 Planar Network . 23

Figure 3.1 Unicast Input Buffer . 27

Figure 3.2 Virtual Channel Allocator . 29

Figure 3.3 Switch Allocator . 31

Figure 3.4 Adaptive Router’s Input Buffer . 33

www.manaraa.com

xi

Figure 3.5 Routes from (2,2) to (0,4) . 34

Figure 3.6 Congestion Observation Window 5× 5 35

Figure 3.7 Num. of Valid Path (Odd) . 36

Figure 3.8 Num. of Valid Path (Even) . 36

Figure 3.9 Observation Window . 36

Figure 3.10 Virtual Destinations . 38

Figure 3.11 General Avg. Packet Arrival Time V.S. # flits arrival Plot 39

Figure 3.12 Unicast Maximum Throughput Comparison 44

Figure 3.13 Unicast Average Packet Arrival Time Comparison 45

Figure 3.14 Unicast Number of Co-processor Executions Comparison 46

Figure 3.15 Unicast Average Co-processor Runtime Comparison 46

Figure 3.16 Range Test: Maximum Throughput Comparison 47

Figure 3.17 Range Test: Average Packet Arrival Time Comparison 51

Figure 3.18 Range Test: Num. of Co-processor Executions Comparison 52

Figure 4.1 Multicast (Binary) Decoding . 54

Figure 4.2 Multicast (Unary) Decoding . 54

Figure 4.3 Multicast Comparison: (a) XY-Routing, (b) Adaptive Routing 55

Figure 4.4 Region Identifying: (a) even column, (b) odd column 56

Figure 4.5 Rule 1 example . 57

Figure 4.6 Rule 2 example . 58

Figure 4.7 Rule 3 example . 58

Figure 4.8 Packet Address Modification Example 60

Figure 4.9 Multicast Deadlock Example . 61

Figure 4.10 Decoupled Addr/Data FIFO . 63

Figure 4.11 Packet 77 Break . 64

Figure 4.12 Packet 77 Sent by the IP at (2,1) . 64

Figure 4.13 Packet 77 Second Part . 66

Figure 4.14 Packet 77 Received by the IP at (3,1) 66

www.manaraa.com

xii

Figure 4.15 (a) 1-output FIFO (b) 5-output FIFO 67

Figure 4.16 Adaptive Multicast Input Buffer . 68

Figure 5.1 Number of Startup Flits . 71

Figure 5.2 Packet Structure . 72

Figure 5.3 Unary Multicast Code to Binary Multicast Code Transformation . . . 74

Figure 6.1 Multicast Router Maximum Throughput (Uniform Traffic) 78

Figure 6.2 Multicast Router Maximum Throughput (Transpose Traffic) 79

Figure 6.3 Multicast Router Maximum Throughput (Transpose2 Traffic) 79

Figure 6.4 Multicast Router Packet Latency (Uniform Traffic) 81

Figure 6.5 Multicast Router Packet Latency (Transpose Traffic) 82

Figure 6.6 Multicast Router Packet Latency (Transpose2 Traffic) 82

Figure 6.7 Multicast Router Flits Energy Consumption (Uniform Traffic) 83

Figure 6.8 Multicast Router Flits Energy Consumption (Transpose Traffic) 83

Figure 6.9 Multicast Router Flits Energy Consumption (Transpose2 Traffic) . . . 84

Figure 6.10 Average Video System Co-processor Runtime Comparison 86

Figure 6.11 Video System FPGA Configuration Time Comparison 86

Figure 6.12 Video System FPGA Configuration Router Energy Consumption . . . 87

Figure 6.13 Virtual Cut-Through and Wormhole Routing Comparison (Maximum

Throughput (Data Flits)) . 89

Figure 6.14 Virtual Cut-Through and Wormhole Routing Comparison (Average

Packet Latency Per Data Flit (Cycles)) 90

Figure 6.15 Virtual Cut-Through and Wormhole Routing Comparison (Average

Packet Latency Per Data Flit (Cycles)) 91

Figure 6.16 Average Video System Process Runtime Comparison 92

Figure 6.17 Video System FPGA Configuration Time Comparison 93

Figure 7.1 Many-FPGA on-chip system Layout 97

Figure 7.2 CLB Group . 98

www.manaraa.com

xiii

Figure 7.3 Co-processors (a) Code, (b) Dataflow Graph 99

Figure 7.4 (a) Co-processor Structure (b) Current Chip Layout 101

Figure 7.5 MPEG4 Encoder (M4EB/M4EV) . 104

Figure 7.6 MPEG4 Decoder (M4DB/M4DV) . 104

Figure 7.7 MPEG2 Encoder (M2E) . 104

Figure 7.8 MPEG2 Decoder (M2D) . 105

Figure 8.1 Placement Comparison . 106

Figure 9.1 Sharable CLB Group Architecture . 115

Figure 9.2 Module Sharing (a) Two Co-processor Graphs, (b) Two Mapped Co-

processor Graphs . 116

www.manaraa.com

xiv

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my adviser Dr. Akhilesh Tyagi with deep

gratitude. This thesis could not be completed without his patience, encouragement. His

insights have always inspired me and renewed my hopes for completing my graduate education.

I would also like to thank my committee members for their efforts and contributions to this

work. I would additionally like to thank Professor Mahadevan Gomathisankaran, Veerendra

Allada and Swamy Ponpandi. The valuable discussion with them make my thesis get into

better shape.

www.manaraa.com

xv

ABSTRACT

The advance in fabrication technology hugely increases the number of available transistors

on a single chip. It allows the industry to build the entire system on a single chip which was

only realizable on a board in the past. On-chip System not only reduces the computer physical

size, but also increases the computation performance because modules/cores/intellectual prop-

erties (IPs) are packed closely together. When simply increasing the clock frequency to increase

the computer performance becomes harder because of the wire delay, putting more computa-

tion units on a single chip becomes a good alternative for improving computer performance.

Building more cores on a chip in the future is expected.

With many IPs on a chip, traditional bus is no longer able to provide enough bandwidth to

support the communication between IPs. Providing a high performance on-chip network infras-

tructure for the IP communication becomes a key to high performance on-chip computation.

This thesis focuses on an on-chip network supporting on-chip system.

This thesis is composed of two main parts. In the first part, a high performance deadlock

free dual-coded on-chip router using adaptive multicast routing is built. Compared with the

traditional deterministic XY unicast router, this router can reduce both packet latency and

energy consumption.

In the second part, a co-processor placement algorithm for an on-chip system built from

FPGAs with an on-chip network is proposed. The algorithm aims to place the communicating

modules as close as possible. In addition, an algorithm for sharing a FPGA by multiple co-

processors and an algorithm for supporting polymorphic co-processor are proposed to increase

on-chip FPGA system throughput.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Fabrication technology has been consistently improving. The transistor feature size has

reduced from 180nm in 2000 to 32 nm in 2009. International Technology Roadmap for Semi-

conductors (ITRS) [16] predicts that the feature size will be further reduced to 16 nm by 2018,

INTEL Corp. predicts that 16 nm will arrive as early as 2013 and NVIDIA Corp. predicts

that 11 nm will arrive in 2015. The reduction in transistor size has both pros and cons. The

main pro is the increased number of transistors that can be put on a single chip. The main

con is the increased wire delay. Increased wire delay prohibits the chip designer from gaining

computer performance by simply increasing the clock frequency. How to effectively use these

ample number of on-chip transistors in the upcoming era becomes an interesting question.

The simplest answer is to put the entire system on a chip to reduce the communication la-

tency between computer’s modules(or IP). In the past, the industry had always added new

components onto a chip whenever the feature size decreased. At the beginning, cache was

added. From then, floating point computation units, memory controllers, network controllers,

peripheral controllers and graphic computation units were added. To further increase com-

puter performance, the industry packed as many central processing units (cores) as possible

onto a single chip recently. With the proper uses of parallel computing algorithms, these cores

can collaborate efficiently. Hence, users would be able to enjoy a massive performance gain.

Some existing on-chip parallel computing system prototypes include INTEL 80-core teraflop

research chip [1], Wavescalar [38] and TRIPS processor [17].

Communication between these on-chip IPs is provided by a bus. As the number of on-chip

IPs increases, a traditional bus would no longer be able to provide sufficient bandwidth for

the IP communication. Communication delay due to bus congestion increases IP idle time and

www.manaraa.com

2

limits system performance. Providing a high performance on-chip network infrastructure for

the IP communication becomes a key to high performance on-chip computation.

1.1 Motivation for an advanced router

Router is the main component of an on-chip network. It routes a packet from a source to

a destination. The simplest router supports XY-routing and unicast routing. An advanced

router can reduce packet latency and energy consumption. There are many advantages in

utilizing a deadlock free and adaptive multicast on-chip router which support multicast binary

code, multicast unary and on-the-fly code transformations. These advantages will be discussed

in detail in this section.

1.1.1 A need for an adaptive router

An adaptive router can increase system performance.

In a 2D Mesh on-chip network, the most basic on-chip router uses deterministic XY-routing.

On the one hand, XY-routing requires low hardware resources, but on the other hand, the

router suffers from congestion problem. In XY-routing, a packet is first routed to the X

direction until it reaches the column of the destination and then route to the Y direction until

it reaches the destination. When two packets are sent to a same link, network congestion

occurs. It is because packet routes are fixed. A packet could not take an alternative route to

traverse to its destination even if there are some less congested links leading to the destination.

Fig. 1.1(a) illustrates an XY-routing congestion problem. In this example, IP3 sends a

packet to IP2 and IP4 sends a packet to IP5. Using XY-routing, the link between IP4 and IP5

is congested. As a result, the packet latencies of both packets increase. In fact, there exists

an alternative route for the packet from IP3 to IP2 to traverse to its destination without

any network congestion. If adaptive routing is in use as shown in Fig. 1.1(b), the congestion

problem could be avoided and packet latency would be reduced.

In this thesis, a Path-Based adaptive routing method is proposed. It has a better perfor-

mance than both of the existing DyXY adaptive routing method [29] and Regional Congestion

www.manaraa.com

3

Figure 1.1 XY-Routing Congestion Problem

Aware adaptive routing method [20].

1.1.2 A need for a multicast router

Lack of multicast support enormously increases packet latency and energy consumption.

In on-chip parallel computing system, there are a lot of one-to-many packets. For exam-

ple, Chip-Level-Multiprocessor (CMP) requires high speed multicast memory coherence packet

transmission for memory synchronization [23, 11, 37] and multicast operand packets transmis-

sion for computation (RAW [40], TRIPS [36], WaveScalar [39]). In a co-processing computer

system, microprocessor forks out data from its cache to multiple IPs for parallel acceleration.

In an on-chip system with many FPGA tiles, a single configuration bitstream has to be mul-

ticast from an I/O tile to many FPGAs when multiple FPGA request a same configuration

bitstream file for runtime reconfiguration [2]. Native multicast support decreases packet la-

tency. In CMP, it reduces microprocessor stalling time due to memory synchronization. In

co-processing system, it reduces acceleration startup time. In FPGA-built on-chip system, it

reduces reconfiguration time.

Fig. 1.2 compares the number of buffer writes between networks with and without multicast

support. In this example, IP at location (0,0) multicasts a packet to five IPs at location (4,0),

(4,1), (4,2), (4,3) and (4,4) respectively. In a unicast system, the network interface has to

www.manaraa.com

4

Figure 1.2 Unicast and Multicast Buffer Write Comparison

duplicate the multicast packet five times and send out each unicast packet one by one. The

number of buffer writes in a network with native multicast support is 8 while the number

of buffer writes in a network without native multicast support is 30. With native multicast

support, the network itself would be less congested, packet latency would be lower and energy

consumed by the network would be lesser.

1.1.3 A need for an adaptive multicast router

When the multicast function and the adaptive routing are combined, multicast packet

divergence points can be chosen dynamically based on destinations and congestion status to

further reduce the number of buffer writes and network load. Fig. 1.3 compares the number

of buffer writes between networks with and without an adaptive multicast function. In this

example, IP at location (0,0) multicasts a packet to four IPs at location (1,4), (2,4), (3,4)

and (4,4). In the XY multicast tree (Fig. 1.2 (a)), the packet can only diverge at locations

(1,0), (2,0) and (3,0). In the adaptive multicast tree (Fig. 1.2 (b)), the packet can diverge

at locations (1,4), (2,4) and (3,4). The number of buffer writes in a network with adaptive

multicast support is 8 while the number of buffer writes in a network without adaptive multicast

support is 20.

www.manaraa.com

5

R R

R R

R R

R

R

R

R R

R R

R

R

R R

R R

R R

R R

R R

R R

R R

R R

R

R

R

R R

R R

R

R

R R

R R

R R

R R

R R

(a) XY Multicast Tree (b) Adaptive Multicast Tree

(1,0)

(0,0)

BufferWrite: 20 V.S. 8

Figure 1.3 XY and Adaptive Multicast Buffer Write Comparison

1.1.4 A need for a multicast router supporting unary code, binary code and code

transformation

Multicast destination addresses are commonly coded in two ways, one-hot unary code or

binary code. Both coding methods offer advantages at a certain point in the design space.

Unary code has fewer number of address flits when the number of destinations is high. Binary

code has fewer number of address flits when the number of destinations is low. Given a unary

coded multicast packet with many destinations, the number of addresses decreases every time

the packet diverges. When the number of addresses decreases to a certain level, binary code

becomes a better coding method instead of unary code. A router accepting two codes with

transformation from unary code to binary code can minimize the number of address flits of

multicast packet. Hence, the packet latency could be reduced.

Beside the transformation from unary multicast code to binary multicast code, a transfor-

mation from multicast code to unicast code is another function which can reduce the packet

latency. Multicast virtual channel requires a lot of chip space. In order to minimize the physi-

cal size of a router, each router port has only one multicast virtual channel and several unicast

virtual channels. Therefore, multicast virtual channel is considered to be a rare property in a

router. To lessen the competition for the multicast virtual channel, a router can change the

packet coding from multicast to unicast when the number of addresses of a multicast packet

www.manaraa.com

6

drops to one.

1.1.5 A need for a multicast deadlock free router

Multicast deadlock halts the packet flow and makes the system unfunctionable. It is crucial

to keep the network deadlock free. There were several attempts to avoid multicast deadlock

problem. However, each attempt has its own drawback. Lin et al. [30] propose sending

separate multicast packet copies to four separate quadrants, but the number of packet copies

would be hugely increased. They also propose utilizing route pre-computation by Hamiltonian

path partitioning, but then the routing would not be adaptive. Chien et al. propose Planar

network [9] which uses two sub-networks (X+ and X−) to route the packet. Then again, some

extra routers and links would be needed for the extra sub-networks. In this thesis, we try a

new approach by splitting the FIFO into a data FIFO and an address FIFO. When a deadlock

is going to occur, the router breaks the packet into two pieces to prevent the deadlock from

occurring. Compared with Lins methods, the number of duplicate flits is fewer. Compared

with Planar network, the physical size of the router is smaller.

1.2 Motivation for an on-chip system built by many FPGAs with the

on-chip network

A system-on-chip realized with an FPGA is common today. Modules in an on-chip system

can be reconfigured to meet the dynamically changing system demands. For example, security

policy could be renewed in the FPGA modules even after the initial system implementation.

Digital signal processing algorithm assigned to an FPGA can also be renewed to fit the changing

input data characteristics.

Currently, soft bus is the default choice for an on-chip system modules communication. As

the number of on-chip system modules grows, the bandwidth of the bus could not meet the

modules’ high communication demands. An on-chip system with many modules needs a native

2D mesh network to avoid communication infrastructure becoming the system’s bottleneck.

Fig. 1.4 shows a layout of FPGAs with a native 2D mesh network. The network on the

www.manaraa.com

7

bottom left corner controls the FPGA reconfiguration. Each FPGA tile could be configured

as a module to support the system.

I/
O

R

N
I

F
P
G
A

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

F
P
G
A

F
P
G
A

F
P
G
A

F
P
G
A

F
P
G
A

F
P
G
A

F
P
G
A

F
P
G
A

F
P
G
A

F
P
G
A

F
P
G
A

C
P
U

F
P
G
A

F
P
G
A

F
P
G
A

66.14Kλ
48.11Kλ

Figure 1.4 On-chip system built by FPGA with 2D Mesh network

1.2.1 A need to place system modules as close as possible

When system modules are closely placed, network’s energy consumption could be reduced

and system throughput could be increased. In a native 2D mesh network supporting FPGA

on-chip system, modules location affects system performance. Fig. 1.5 compares two modules

placements. Suppose a co-processor in this system requires two modules, M1 and M2. After

leaving I/O, the data goes through M1 to M2, and then goes back to I/O. In Fig. 1.5 (a), M1 is

placed on location (1,1) and M2 is placed on location (1,2). The number of hops hops traversed

by each datum is three. In Fig. 1.5 (b), M1 is placed on location (1,1) and M2 is placed on

location (2,2). The number of hops traversed by each datum is five. Placing modules closer

to each other can reduce communication’s energy consumption. It can also improve system

performance because each packet suffers less congestion.

www.manaraa.com

8

I/
O

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

F
re
e

M
1

F
re
e

C
P
U

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

M
2

F
re
e

F
re
e

(1,0)

I/
O

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

F
re
e

M
1

F
re
e

C
P
U

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

M
2

F
re
e

F
re
e

F
re
e

(1,0)

(a) (b)

Figure 1.5 Placements Comparison

1.2.2 A need for sharing system modules among co-processors

Module sharing among co-processors can increase system throughput. In an on-chip system,

one co-processor is supported by multiple modules. Within each co-processor, the module with

the highest processing time is the bottleneck module of the co-processor. It is a key factor in

determining the co-processor’s throughput. This bottleneck module creates idle time on other

modules within the same co-processor. The bottleneck module’s ancestors have to wait for the

bottleneck module to accept the newly generated data while the descendants have to wait for

the data generated by the bottleneck module.

Fig. 1.6 shows an example of module sharing. In this example, two co-processors were

mapped on the chip. Module lib1’s processing time (PT) is ten cycles. Module lib2’s processing

time is two cycles. Module lib3’s processing time is twelve cycles. Without modules sharing,

six FPGA tiles are needed to support two co-processors. Suppose module lib2 is shared by the

two co-processors. Only five FPGA tiles are needed instead of six. Note that the processing

time of module lib2 now becomes four cycles. However, the bottlenecks of both co-processor

stay at twelve cycles. Therefore, their throughput will not be significantly affected. Using

lower number of FPGA tiles to support the two co-processors allows more free FPGA tiles

to support others co-processors. As a result, the whole system throughput increases. In this

thesis, we are going to develop a bottleneck aware module sharing algorithm to increase the

www.manaraa.com

9

lib1

lib2

lib3

lib1

lib2

lib3

Co-Processor A_1 Co-Processor A_2

datain datain

dataout dataout

lib1

lib2

lib3

lib1

lib3

datain datain

dataout dataout

Tile (1,2)

Tile (1,0)

Tile (1,3)Tile (2,2)

PT=10

PT=2

PT=12

PT=10

PT=12

PT=10

PT=2

PT=12

PT=10

PT=4

PT=12

Mapping

Tile (1,1)

Co-Processor A_1 Co-Processor A_2

Figure 1.6 Module Sharing (a) Two Task Graphs, (b) Two Mapped Task

Graphs

on-chip system throughput.

1.2.3 A need for an on-chip system with polymorphic modules

FPGA can be configured as a specific module, such as Discrete Concise Transform (DCT)

module or Advanced Encryption Standard (AES) module, to speed up a specific function. It

can also be configured as a soft microprocessor, e.g. Xilinx Microblaze, to handle a broad range

of functions. The maturity of C-to-HDL technology allows code written in C to be translated

into binary image for the soft microprocessor and FPGA bitstream for FPGA fabric. Therefore,

the future on-chip system can choose a module running in either software mode or hardware

mode to support a co-processor. Modules running in software mode usually provide lower

throughput and consume more energy compared with the modules running in hardware mode.

However, when the co-processor’s expected runtime is short and there exists a configured

microprocessor on the chip, running the modules in software mode allows the co-processor to

start sooner without waiting for the tile reconfiguration. The module is ready to support the

co-processor once the module instructions arrive at the soft processor L1 cache (configured by

www.manaraa.com

10

the block RAM). This characteristic allows the co-processor to complete in a short time. In

the last part of this thesis, we will extend our placement algorithm to support the polymorphic

modules selection.

1.3 Thesis Organization

This thesis is organized as follows:

In Chapter 2, existing related works are reviewed.

In Chapter 3, an adaptive router using a new path-based adaptive routing algorithm is

introduced.

In Chapter 4, a multicast adaptive router and a novel way to break the multicast deadlock

are presented.

In Chapter 5, a multicast router supporting both unary multicast code and binary multicast

code is introduced. This router also supports transformation from unary code to binary code

and from multicast code to unicast code.

In Chapter 6, experimental results about multicast router and information about hardware

implementation are presented.

In Chapter 7, a protocol for an on-chip FPGA system with a 2D Mesh network is presented.

In Chapter 8, a run-time placer which favors placing the co-processor modules as close as

possible is introduced.

In Chapter 9, an algorithm supporting CLB modules sharing is presented.

In Chapter 10, an algorithm supporting polymorphic modules placement is discussed.

www.manaraa.com

11

CHAPTER 2. REVIEW OF LITERATURE

This chapter reviews the architecture of an on-chip network router, the use of on-chip

network and some research and design issues in an on-chip network which are closely related

to this thesis.

Figure 2.1 Data Flow From the Source to the Destination

2.1 On-chip Network

On-chip network contains four components. They are intellectual property (IP), network

interface (NI), router and link.

Intellectual property is the component that computes data and provides data storage. Ex-

amples of Intellectual property include microprocessor, field programmable gate array (FPGA),

application-specific integrated circuit (ASIC), graphics processing unit and memory controller.

Network interface (NI) is an interface between network router and IP. It packetizes data

sent by a directly connected IP and transmits the packet into the network through the router.

Besides, it receives other packets sent by other IPs through the router, de-packetizes the

received packets and sends the data to the directly connected IP.

www.manaraa.com

12

Router controls packet flow. It receives a packet either from the network interface or from

its neighbor routers. Then, it analyzes the packet address and delivers the packet to the proper

direction.

On-chip router ports are connected by links. Link width is shorter than packet length. A

packet has to be divided into flits to traverse through the network. Each flit is usually 128 bits

which equals the link width. Each router port can send and receive one flit per cycle through

the links.

Topology defines how on-chip routers are connected. On-chip network topology includes

2D Mesh [15], Torus [27], Ring [24], FatTree [21] and Butterfly [33]. Among all of these, 2D

Mesh is the most commonly used topology [19, 32, 12, 4, 5, 27] because of its regularity and

simplicity. An on-chip system with a 2D-Mesh network is shown in Fig. 2.2.

I/
O

R

N
I

C
P
U

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

C
P
U

G
P
U

C
P
U

C
P
U

G
P
U

G
P
U

G
P
U

A
S
IC

A
S
IC

FP
G
A

FP
G
A

A
S
IC

A
S
IC

FP
G
A

FP
G
A

Figure 2.2 System On Chip with 2D Mesh On chip Network

2.2 Router architecture

A simple router in a 2D mesh network has three components. They are input buffer, route

computation unit and switch arbiter. An input buffer temporarily stores the packet flits. An

www.manaraa.com

13

Input buffer temporarily stores the packets. Its main component is FIFO storage. Each FIFO’s

slot stores one flit. The first flit going into the FIFO storage will leave first. The switch arbiter

allocates the output port to the packet. Each router has five input ports and five output ports

in the North, the East, the West, the South and Local. The North output port is connected

to the South input port of the router on the North. The East output port is connected to the

West input port of the router on the East. The West output port is connected to the East

input port of the router on the West. The South output port is connected to the North input

port of the router on the South. The Local port is connected to the Local IP. When the flits

arrive at the router, they are stored in FIFO storage. When all address flits of a packet have

arrived, the route computation unit digests the address flits and decides which direction the

packet is traversing to. The packet then requests the output port in the designated direction.

Once the packet has obtained the output port, the flits traverse to the next router.

Figure 2.3 Physical Channel Blocking Problem

Figure 2.4 Solving Blocking problem by Virtual Channel

www.manaraa.com

14

If there is only one set of FIFO storage in each port, the router is called a physical channel

router. Physical channel router is small but suffers from packet blocking problem. Fig. 2.3

shows an example of packet blocking problem. In router (0,1), Packet B, C and D are competing

for the storage set on router (0,2)’s West port. Packet C is the winner which is currently

occupying the storage set that Packet B and D are still waiting for. Packet B is temporarily

stored in the storage set on router (1,0)’s North port. Packet D is temporarily stored in

the storage set on router (1,0)’s West port. Packet A’s destination is (0,0), but it is now

temporarily stored in the storage set on router (1,1)’s North port. It is supposed to traverse to

the South. As there is only one set of FIFO storage on router (1,0)’s North port and it is being

occupied by Packet B, Packet A has to wait until Packet B has released it. However, Packet B

will not release the storage set on router (1,0)’s North port until it has been traversed to the

storage set on router (2,0)’s West port which is currently occupied by Packet C. To relieve the

blocking problem, virtual channel is introduced. Virtual channel router increases the number

of FIFO storage sets on each router port. These FIFO storage sets are called virtual channels.

Fig. 2.4 shows a network with virtual channel routers. Each router’s port contain two FIFO

storage sets. With the extra storage set, Packet A can now be routed to its destination by

going through another FIFO storage set on router (1,0)’s North port while Packet B is still

occupying one storage set on the same router’s port. The packet latency of A is reduced and

hence, network performance is improved. The link from router (0,0) to router (1,0) in physical

channel router was idle, because Packet A was blocked at router (1,1). On the contrary, the

link from router (0,0) to router (1,0) in virtual channel router was used by Packet A. It shows

that virtual channel router also increases wire utilization. Even though virtual channel router

seems to be superior than physical channel router, it has some drawbacks. The extra FIFO

storage sets make the design more complex and requires more space and energy. Also, a more

complex virtual channel arbiter is needed to decide which packet owns which storage set on

the downstream router’s port. As a result, a virtual channel router has a larger physical size

and a higher energy consumption.

www.manaraa.com

15

2.2.1 Pipelined On-chip Router

The router throughput can be increased by pipelining. Peh et al. [34] have introduced

a 6-stage pipeline on-chip virtual channel router. The six stages are Buffer Write (BW),

Route Computation (RC), Virtual Channel Allocation (VA), Switch Allocation (SA), Switch

Traversal (ST) and Link Traversal (LT). At Buffer Write (BW) stage, an incoming flit is written

into an input buffer’s FIFO storage. At Route Computation (RC) stage, a route computation

unit decides which direction a packet goes. At Virtual Channel Allocation (VA) stage, a

virtual channel arbiter allocates a virtual channel on the downstream router to a packet. At

Switch Allocation (SA) stage, a switch arbiter allocates an output port for a packet which

owns a virtual channel on the downstream router. At Switch Traversal (ST) stage, the packet

traverses from the input buffer’s FIFO storage to the output port. At Link Traversal (LT)

stage, the packet traverses from the current router’s output port to the downstream router’s

input port.

2.2.2 Store-and-Forward, Virtual cut-through and Wormhole Routing

As mentioned before, packet length is longer than link width. The network interface divides

a packet into many flits (flow control units) and sends them out one by one. (Fig. 2.5)

HEAD BODY ... BODY TAIL

Figure 2.5 Packet Format

Each packet contains at least one Head flit, at least one Body flit and one Tail flit. Head

flits store the destination addresses of a packet. A route computation unit digests Head flits to

make route decision. Body flits store the data sent from the source IP. Tail flit is the last flit

of a packet. It works as a Body flit but also indicates the end of the packet. A virtual channel

is released after the Tail flit leaves it.

There are three methods to route a packet. They are Store-and-Forward Routing, Virtual

www.manaraa.com

16

Cut-Through Routing and Wormhole Routing. They are different in FIFO storage length and

route decision time.

In Store-and-Forward routing, each router’s FIFO storage size is equal to the packet size.

Store-and-Forward router waits until the whole packet has arrived before making route decision.

It has high packet latency and requires a big FIFO storage.

Virtual cut-through router makes route decision once all the Head flits have arrived. Com-

pared with Store-and-Forward routing, Virtual cut-through routing has lower packet latency.

However, its FIFO storage size is still the same.

Due to limited space in a chip, router’s FIFO storage size is usually small. This charac-

teristic makes Store-and-Forward routing and Virtual cut-through routing unfavorable in the

on-chip network because packet size is limited by small FIFO storage size. It decreases the

packet efficiency because a large portion of the packet is Head flits.

Wormhole routing is the most favorable routing method in the on-chip networking commu-

nity. FIFO storage size is smaller than the packet size which makes the router smaller. More

chip space can be reserved for other resources. In case of packet blocking, the packet spans

across multiple routers. Similar to the Virtual cut-through router, route decision is made once

all address flits have arrived.

2.3 Deterministic and Adaptive Routing

Flit flow control can be categorized into deterministic routing and adaptive routing. Packet

route is fixed in deterministic routing. Router cannot change packet routes based on dynamic

network congestion status. XY-routing is the most famous deterministic routing algorithm. A

packet is first routed in the X direction until it reaches the column of the destination. The

packet is then routed in the Y direction until it reaches the destination. XY-routing is simple

and easy to implement in hardware. It is also free from unicast deadlock. The only drawback

is that it suffers from the congestion problem stated in Chapter 1.

Another deterministic routing algorithm is pre-computed routing. In pre-computed routing,

a packet route from a source to its destination is predetermined by the network interface. This

www.manaraa.com

17

pre-computed route is stored in the packet’s Head flits. Network routers route the packet

according to the pre-computed route in the Head flits. When all network interfaces collaborate

and a proper algorithm is used to compute the route, both unicast and multicast deadlocks

could be avoided.

Adaptive routing allows routers to make route decisions based on the network congestion

status. In adaptive routing, each router has congestion information of its surroundings. The

adaptive router routes the packet to a less congested channel. Gratz et al. [20] have summarized

four ways to determine the congestion condition.

1. The number of free virtual channels:

A link will be free sooner if less virtual channels are in use on the downstream routers

[13].

2. The number of free FIFO storage slots:

Each virtual channel contains many FIFO storage slots. Counting the number of free

FIFO storage slots provides a more comprehensive measurement compared with counting

the number of free virtual channels. A higher number of free FIFO storage slots implies

that the link will be free sooner [3].

3. Crossbar demand:

This method uses the number of packets competing for a same link to estimate the

congestion condition [20]. If the number is low, that link will be free sooner.

4. Composite metric:

Composite metric combines the three methods described above in different proportions.

Router
Cto_West

Figure 2.6 DyXY adaptive routing

www.manaraa.com

18

Router
Cfrom_East

Cto_West
Router

Cfrom_North

Cfrom_East

Cto_West

Cfrom_South

Router

Cfrom_North)Q1

Cfrom_East_Q1
Cto_West_Q1

Cfrom_South_Q4

Cfrom_North_Q2

Cfrom_East_Q4
Cto_West_Q4

Cfrom_South_Q3

(a) (b) (c)

Figure 2.7 Regional Congestion Aware adaptive routing

DyXY [29] is one of the well-cited adaptive routing methods. In DyXY, each router re-

ceives the FIFO storage usage information from the downstream routers through the dedi-

cated congestion status wires. In the Route Computation (RC) stage, the router routes a

packet to the downstream routers with the lowest FIFO storage usage. Fig. 2.6 shows how

DyXY router sends the congestion information (Cto West) to the router on the West. The

router sends the FIFO storage usage information on its West port to the router on the West.

Cto West = f(CWest port)

Regional Congestion Aware Router (RCA) [20] is another well-cited adaptive routing method.

RCA aims to include more downstream links congestion information to increase the accuracy

in making efficient routing decisions. The congestion information is aggregated and propagated

starting from some distanced downstream links. The congestion information of closer links is

weighted heavier than more distanced links.

There are three versions of RCA which are:

1. RCA 1D:

The routers aggregate and propagate the congestion information in two directions. Infor-

mation moves either vertically or horizontally in the same direction as the incoming infor-

mation. Fig. 2.7(a) shows how RCA 1D transfers the congestion information (Cto West)

to the router on the West. The router aggregates its own congestion information and

www.manaraa.com

19

information received from the router on the East. Then, it propagates the aggregated

information to the router on the West. These aggregated information is a function of the

router’s FIFO storage usage information on its West port and the congestion information

received from the router on the East. Cto West = f(CWest port, Cfrom East)

2. RCA Fanin:

The routers aggregate and propagate congestion information from all Fanin directions

except the one that the information is going to be propagated to. Fig. 2.7(b) shows

how RCA Fanin passes the congestion information (Cto West) to the router on the West.

The router aggregates its own congestion information and the information received from

the routers on the East, the North and the South. Then, it propagates the aggregated

information to the router on the West. These aggregated information is a function

of the router’s FIFO storage usage information on its West port and the congestion

information received from the routers on the East, the North and the South. Cto West =

f(CWest port, Cfrom North, Cfrom South, Cfrom East)

3. RCA Quadrant

The routers aggregate and propagate congestion information by quadrants. It propagates

two selected congestion information to the downstream router based on the direction of

the propagation. Fig. 2.7(c) shows how RCA Quadrant passes the congestion informa-

tion (Cto East) to the router on the West. The router aggregates its own information

and those received from the routers on the East, the North and the South. Then, it

propagates the aggregated information to the router on the West. There are two aggre-

gated information Cto West Q1 and Cto West Q4. Cto West Q1 is a function of the router’s

FIFO storage usage information on its West port and the Q1 congestion information

received from the routers on the East and the North. Cto West Q1 is a function of the

router’s FIFO storage usage information on its West port and the Q4 congestion in-

formation received from the routers on the East and the South. Cto West Q1 reflects

the congestion information to the Quadrant I. Cto West Q4 reflects the congestion infor-

mation to the Quadrant IV. Cto West Q1 = f(CWest port, Cfrom North Q1, Cfrom East Q1)

www.manaraa.com

20

Cto West Q4 = f(CWest port, Cfrom South Q4, Cfrom East Q4)

2.4 Unicast and Multicast

There are mainly two types of packet communications in on-chip network. They are unicast

and multicast. There is only one sender and one receiver in unicast. There is one sender and

more than one receiver in multicast. The needs for multicast communication are described in

Section 1.1.2. Multicast packet routing can either be path-based or tree-based. In path-based

multicast packet routing, a packet follows a pre-determined path to reach all the destinations

one by one. The packet diverges when it has arrived at one of the destinations. It ends

when the packet has arrived at the last destination. In tree-based multicast packet routing,

a packet diverges at selected routers based on the routing algorithm to reach its destinations

independently.

2.5 Deadlock

There are two types of deadlocks. They unicast deadlock and multicast deadlock. Deadlock

halts packet flow and makes the whole network unfunctionable.

2.5.1 Unicast Deadlock

Unicast deadlock has been well studied in previous research. It occurs when multiple

packets in the virtual channels form a dependent cycle. Fig. 2.8 shows a unicast deadlock

example.

Packet 55 stored in router (1,1)’s East channel needs to traverse to router (1,2)’s South channel.

Packet 66 stored in router (1,2)’s South channel needs to traverse to router (2,2)’s West channel.

Packet 77 stored in router (2,2)’s West channel needs to traverse to router (2,1)’s North channel.

Packet 88 stored in router (2,1)’s North channel needs to traverse to router (1,1)’s East channel.

No packet can traverse to the desired channel until at least one of the packets has released

its own channel. No packet can release its own channel until at least one of the packets has

traversed to its desired channel. As a result, a unicast deadlock is formed.

www.manaraa.com

21

55

66

(1,1) (2,1)

(1,2) (2,2)

77

88

Figure 2.8 Unicast Deadlock

Unicast deadlock can be avoided by turn prohibition [18].

Deterministic XY-routing is free from unicast deadlock because some packet turns are not

allowed. Packet turns from the North/South to the East/West are restricted. Under this

circumstance, no dependent cycles can be formed.

Adaptive routing without restricting packet turns suffers from unicast deadlock. Glass

[18] introduces West-First, North-Last and Negative-First methods to restrict some turns in

the adaptive routing. However, Glass’s methods create an unbalanced traffic distribution in

the network. Taking this disadvantage into account, Chiu [10] proposes a Odd-Even Turn

Model. The model prohibits the East to the North/South packet turns in even columns and

the North/South to the West turns in odd columns. Instead of using turn restrictions, Dally

et al. [13] introduce Ordered Virtual Channels. In their method, routers and channels are

ordered. A router can only use a channel with equal or less order to send packets to the

downstream routers. Kim et al. [26] propose assigning different channels to store packets with

different turning directions to avoid deadlock.

2.5.2 Multicast Deadlock

Like unicast deadlock, multicast deadlock is formed by channel dependency. Unlike unicast

deadlock, multicast deadlock cannot be avoided by turn restrictions or ordered virtual channels.

Therefore, even XY-routing suffers from multicast deadlock. Lin et al. [30] show an example

of multicast deadlock (Fig. 2.9). This example applies to routers with physical channel and

routers with any number of virtual channels. The number of virtual channels is assumed to be

www.manaraa.com

22

5577

55

55

77

(0,1) (1,1) (2,1) (3,1)

55 out

77

77 in

in

out out

Figure 2.9 Multicast Deadlock Example

one.

IP (1,1) sends multicast Packet 55 to IP (0,1) and IP (3,1).

IP (2,1) sends multicast Packet 77 to IP (0,1) and IP (3,1).

Packet 55 at router (1,1) has successfully obtained router (0,1)’s East channel and router (2,1)’s

West channel.

Packet 77 at router (2,1) has successfully obtained router (3,1)’s West channel and router

(1,1)’s East channel.

Flits are sent to their obtained channels accordingly.

However, Packet 55 at router (2,1) is waiting for router (3,1)’s West channel which is occupied

by Packet 77. At the same time, Packet 77 at router (1,1) is waiting for router (0,1)’s East

channel which is occupied by Packet 55. As a result, a multicast deadlock is formed.

(X-,Y+) (X+,Y+)

(X-,Y-) (X+,Y-)

Figure 2.10 X+, X-, Y+, Y- Zones

Lin et al. [30] propose deterministic routing strategies to avoid multicast deadlock. It is

to partition the destinations into (X+, Y +), (X+, Y −), (X−, Y +) and (X−, Y −) zones (Fig.

www.manaraa.com

23

2.10). A sender sends one packet copy to its destinations in each zone using XY-routing.

To increase the network throughput, they also propose Hamiltonian Path Partitioning. In

this method, the network interface of the packet source pre-computes the packet route using

Hamiltonian Partitioning algorithm and stores the route into the packet’s Head flits. Network

router routes the packets following the designated route in the packet’s Head flits. Hamiltonian

Partitioning algorithm ensures the network is free from multicast deadlock.

Samman et al. [35] introduce a multicast physical channel router which can avoid the

multicast deadlock using Planar Network [9]. Planar network (Fig. 2.11) has two duplicate

sub-network (X+) and (X−). If the X-coordinate of the packet destination is higher or equal to

the X-coordinate of the packet source, the packet would be routed through (X+). Otherwise,

the packet would be routed through the (X−).

R

IP

R

IP

R

IP

R

IP

X+

X-

Figure 2.11 Planar Network

Bjerregaard et al. [6] have published a survey paper covering many areas in previous

research about on-chip network. Interested readers are referred to Bjerregaard et al. for more

information.

www.manaraa.com

24

CHAPTER 3. Path-Based Adaptive Routing

This chapter discusses Path-based adaptive routing. The goal of this adaptive routing is

to route a packet to its destination using less congested channels in order to reduce packet

latency. The Path-based adaptive routing is a deadlock free routing tailored to the Odd-Even

Model for increased accuracy in estimating congestion condition. Utilizing the slack time in

Route Computation (RC) stage in a pipelined router can improve network performance without

increasing router clock cycle. Motivation for Path-based adaptive routing is first discussed in

the next section. Path-based adaptive routing operation and its micro-architecture will be

discussed later in this chapter.

3.1 Motivation

Adaptive router is able to route the packets to their destinations faster than deterministic

router by utilizing less congested links. There are a few proposed on-chip adaptive routers

including DyXY router and RCA router. In this chapter, we propose Path-based adaptive

router. It is believed to have higher throughput and lower packet latency than the two adaptive

routers mentioned above.

DyXY [29] adaptive router uses congestion information of the links from its downstream

routers to make routing decision. Because its congestion observation window is limited, the

network performance is not satisfying. In addition, when DyXY routing is paired with Odd-

Even Routing restrictions to ensure the network is deadlock free, the adaptive routing choices

are very limited. As a result, DyXY adaptive routing performs only slightly better than

XY-routing.

Compared with DyXY, Regional Congestion Aware Router (RCA) [20] uses a much larger

www.manaraa.com

25

congestion observation window (1D,Fanin and Quadrant). They aggregate and propagate

congestion information starting from some far away routers. The congestion information of

closer links is weighted heavier than more distant links. All congestion information is reduced

to a final 9-bit congestion value to aid in making routing decision. The drawback of RCA is

the two types of noises produced in the congestion information. The first type is the unwanted

congestion information of links beyond the packet destination. The second type is the unwanted

congestion information of the links which are unusable when a deadlock free algorithm is

applied. The unwanted noises in the final congestion value degrade the packet routing quality.

Path-Based Adaptive Router (Path) is designed to have a large congestion observation

window to improve routing quality. Compared with RCA, Path is more accurate in estimating

congestion condition because Path only takes the valid path between the packet source and

destinations into account to make routing decision.

Adaptive routing lengthens the route computation stage. Router clock cycle can be con-

served in Path by utilizing the slack time in Route Computation (RC) stage.

3.2 Basic Unicast Router

Path is based on the 6-stage pipeline router proposed by Peh et al. [34] It has six stages:

1. Buffer Write (BW),

2. Route Computation (RC),

3. Virtual Channel Allocation (VA),

4. Switch Allocation (SA),

5. Switch Traversal (ST).

6. Link Traversal (LT).

A packet is first written into the input buffer’s FIFO storage (virtual channel) at BW

stage. At RC stage, the route computation unit decides the packet outgoing direction. The

www.manaraa.com

26

route decisions are written into a virtual channel status table. Then, the packet requests a

virtual channel in the downstream router. Once the packet has obtained a virtual channel, the

packet location is written into the SA unit’s FIFO in charge of output port allocation in the

designated direction. Packet location is represented by port identification number (PORTID)

and virtual channel identification number (V CID). With (PORTID, V CID), the SA unit is

informed that a packet located at virtual channel V CID on port PORTID needs an output

port to go to the downstream router. At SA stage, some packets which have obtained virtual

channels compete for the output port. SA unit uses FIFO to decide which packet will get the

output port. This FIFO keeps the output port requests in order. At ST stage, the packet

traverses from the virtual channel in the input buffer to the output port. Finally, the packet

traverses to the downstream router at LT stage.

The router contains four main components: input buffer, virtual channel allocator, switch

allocator and crossbar switch. Three changes have been made from the original unicast router.

First, an FIFO is added into the input buffer to keep the virtual channel requests from all

packets in the input buffer in order. Second, we add an FIFO into the switch allocator to keep

the output port requests from all packets in order. Last, the virtual channel allocator was

modified to allocate the downstream router’s virtual channel request to all packets in round

robin style. The operations of a basic router will be discussed in detail in this section.

3.2.1 Input Buffer

Input Buffer (fig. 3.1) is a temporary storage for the incoming packet. In a router, there

is an input buffer on each port. Each input buffer contains several virtual channels (FIFO

Storages) which store the incoming flits. The number of virtual channels (NumV C) is four in

the example. A virtual channel status table stores the packet and virtual channel information.

The information includes whether the packet is routed, the designated direction, the next

virtual channel will be used in the downstream router (NV CID) and whether the virtual

channel is full or empty. The table is used by the input buffer, the router’s virtual channel

allocator and the router’s switch allocator. When a flit has arrived, the input buffer controller

www.manaraa.com

27

VC0

VC1

VC2

VC3

Routed NVCIDDIR

0

VC

1

2

3

VC Status Table

N

E

W

S

I

Route

Computation

DataIn

InBuf

Controller
Put Take

DataOut

DataOut

DataOut

DataOut

DataOut

Output Winner

VCREQUEST FIFO

LOCAL

SOUTH

WEST

EAST

NORTH VC Allocator
VC Request

VC Allocation

Switch Allocator

SW Selections

Full Empty

VCID

Valid Data

VCFull[NumVC]
VCRelease[NumVC]

VC Allocation

Figure 3.1 Unicast Input Buffer

www.manaraa.com

28

Table 3.1 Input Buffer Signals

Signal Description

VCFull[NumVC] The virtual channel is full

VCRelease[NumVC] The virtual channel is released by a packet

VCID The VC used by the incoming Data

Valid Data the incoming data is valid

DataIn Incoming Data

Put Put the Data into the virtual channel

Take Remove the Data from the virtual channel

New VC Request Adding a VC Request into the VC REQUEST FIFO

VC Request Requesta a VC in the downstream routers

VC Allocation Allocate a downstream VC to a packet

Output Winner The output selected by the switch allocator

SW Selections The winning packet selected by the switch allocator

DataOut Data going out of the router

writes the flit into the virtual channel according to the incoming V CID signal. The Route

Computation then decides a routing direction (DIR) for the packet and marks the packet as

routed in the table. An entry is written into VCREQUEST FIFO. VCREQUEST FIFO keeps

the virtual channel requests in order. A VC Request signal is sent to the virtual channel

allocator. When the virtual channel (NV CID) in the downstream router is allocated, that

request entry is removed from the VCREQUEST FIFO and the identification of the virtual

channel (NV CID) is written into the virtual channel status table. Switch allocator decides

the router’s output port winner. When a flit traverses to the downstream router, the input

buffer controller removes the flit from the virtual channel.

3.2.2 Virtual Channel Allocator

Fig. 3.2 shows the virtual channel allocator micro-architecture. Table 3.2 explains the

signals in the virtual channel allocator. Each router contains one virtual channel allocator.

It is used to allocate the virtual channels in the downstream (remote) routers to the packet

at the local router’s input buffer. It contains five micro allocators to handle the IP, the

North, the East, the West and the South virtual channel allocation. The allocation order is

maintained by round robin (RR) algorithm. Each micro virtual channel allocator has some

www.manaraa.com

29

CLK

IP RR

micro VC

Allocator
Free_IP[Num_VC]

RST

VCReq_To_IP[4]

Grant_To_IP[4]

Grant_VCID_To_IP[4]

CLK

North RR

micro VC

Allocator
Free_North[Num_VC]

RST

VCReq_To_North[4]

Grant_To_North[4]

Grant_VCID_To_North[4]

CLK

East RR

micro VC

Allocator
Free_East[Num_VC]

RST

VCReq_To_East[4]

Grant_To_East[4]

Grant_VCID_To_East[4]

CLK

West RR

micro VC

Allocator
Free_West[Num_VC]

RST

VCReq_To_West[4]

Grant_To_West[4]

Grant_VCID_To_West[4]

CLK

South RR

micro VC

Allocator
Free_South[Num_VC]

RST

VCReq_To_South[4]

Grant_To_South[4]

Grant_VCID_To_South[4]

VCReq_From_IP_InBuf[4]

VCReq_From_North_InBuf[4]

VCReq_From_East_InBuf[4]

VCReq_From_West_InBuf[4]

VCReq_From_South_InBuf[4]

Grant_To_IP_InBuf[4]

Grant_To_North_InBuf[4]

Grant_To_East_InBuf[4]

Grant_To_West_InBuf[4]

Grant_To_South_InBuf[4]

Figure 3.2 Virtual Channel Allocator

www.manaraa.com

30

Table 3.2 Virtual Channel Allocator Signals

Signal Description

VCReq From InBuf LD Virtual Channel Request from the Local

Input Buffer at direction LD

Free RD Free the Virtual Channel at the Remote Router

Input Buffer at the direction RD

VCReq To RD Virtual Channel Request To Remote Router

at direction RD

Grant To RD Grant a Virtual Channel at Remote Router

at direction RD

Grant VCID To RD The ID of the Virtual Channel being

granted at the Remote Router at direction RD

Grant To InBuf LD Grant a Virtual Channel to the Local

Input Buffer at direction LD

memory components to record the availability of the virtual channels in the downstream routers

and the local IP. When the micro virtual channel allocator allocates a free virtual channel

NV CID of the downstream router’s input buffer in the direction RD to the packet at the

local router’s input buffer on the port LD, it flags the corresponding GrantToRD’s LD signal.

The local router’s input buffer at the direction LD records the NV CID for the requesting

packet once it has seen the flagged signal.

When the downstream router’s input buffer releases the virtual channel, it flags the Free RD

signal to notify the local router’s virtual channel allocator that the virtual channel is released

and can be allocated to other packets in the future.

3.2.3 Switch Allocator

Switch allocator (fig. 3.3) allocates the output port to packets in the virtual channels in

the input buffers. It contains five micro switch allocators. Each micro switch allocator has a

switch FIFO to record all output port competitors. When the micro virtual channel allocator

allocates a downstream virtual channel to the packet in the local virtual channel (LV CID) at

port (PortID), the (LV CID,PortID) entry is sent to the micro switch allocator. The micro

switch allocator adds the entry into its switch FIFO for switch allocation. The entry at the

head of the switch FIFO in the allocator represents the owner of the output port. The output

www.manaraa.com

31

South

FIFO

micro

Switch

Allocator

CLK

RST

South_SW_InBufID

South_SW_LVCID
South_RFull

South_SW_VCRelease

South_SW_VCEmpty

South_Allocated_InBufID

South_Allocated_VCID

South_VCallocation

South_SW_RVCID

South VC RFull[NumBuf]

All Local

InBuf Status Tables

South_SW_Valid

South RR

micro VC

Allocator

IP FIFO

micro

Switch

Allocator

CLK

RST

IP_SW_InBufID

IP_SW_LVCID
IP_RFull

IP_SW_VCRelease

IP_SW_VCEmpty

IP_Allocated_InBufID

IP_Allocated_VCID

IP_VCallocation

IP_SW_RVCID

IP VC RFull[NumBuf]

All Local

InBuf Status Tables

IP_SW_Valid

IP RR micro

VC

Allocator

North

FIFO

micro

Switch

Allocator

CLK

RST

North_SW_InBufID

North_SW_LVCID
North_RFull

North_SW_VCRelease

North_SW_VCEmpty

North_Allocated_InBufID

North_Allocated_VCID

North_VCallocation

North_SW_RVCID

North VC RFull[NumBuf]

All Local

InBuf Status Tables

North_SW_Valid

North RR

micro VC

Allocator

East

FIFO

micro

Switch

Allocator

CLK

RST

East_SW_InBufID

East_SW_LVCID
East_RFull

East_SW_VCRelease

East_SW_VCEmpty

East_Allocated_InBufID

East_Allocated_VCID

East_VCallocation

East_SW_RVCID

East VC RFull[NumBuf]

All Local

InBuf Status Tables

East_SW_Valid

East RR

micro VC

Allocator

West

FIFO

micro

Switch

Allocator

CLK

RST

West_SW_InBufID

West_SW_LVCID
West_RFull

West_SW_VCRelease

West_SW_VCEmpty

West_Allocated_InBufID

West_Allocated_VCID

West_VCallocation

West_SW_RVCID

West VC RFull[NumBuf]

All Local

InBuf Status Tables

West_SW_Valid

West RR

micro VC

Allocator

Figure 3.3 Switch Allocator

www.manaraa.com

32

Table 3.3 Switch Allocator Signals

Signal Description

LD SW VCRelease VCRelease signal from the selected output owner.

It’s on when the packet’s tail flit is leaving the selected VC

LD SW VCEmpty VCEmpty signal from the selected output (switch) owner.

LD RFull Full signal from the remote router’s target VC.

LD VCallocation VCallocation signal from LD micro VC allocator.

LD Allocated Inbuf It indicates which inbuf obtains the remote VC

LD Allocated VC It indicates which local VC obtains the remote VC

LD SW InBufID The current LD output owner (InBuf)

LD SW LVCID The current LD output owner (Local VC)

LD SW Valid Valid Output Owner

LD SW RVCID VCID of the remote VC

LD VC RFULL[NumBuf] All remote VC full signals

port owner releases the output port when one of the three following situations occurs.

1. The tail flit is coming out from the virtual channel to the output port.

In this case, packet transmission is complete. The local virtual channel is released. The

corresponding entry in the switch FIFO is removed from the switch FIFO.

2. The packet owning the output port has no flits in its virtual channel.

In this case, no flit will come from the virtual channel in the next cycle. The corre-

sponding entry in the switch FIFO will be moved from the FIFO’s head to the FIFO’s

tail.

3. The virtual channel in the downstream router is full.

In this case, the virtual channel in the downstream router has no space to store the new

flit sent by the packet. The corresponding entry in the switch FIFO will be moved from

the FIFO’s head to the FIFO’s tail.

www.manaraa.com

33

3.3 Path-Based Adaptive Routing

3.3.1 Congestion Estimation

Path-Based Adaptive Router (fig. 3.4) contains a congestion table to aid in routing. The

congestion table receives congestion information from the local virtual channel status table

and downstream routers. It also sends its own congestion information to upstream routers.

VC0

VC1

VC2

VC3

Routed NVCIDDIR

0

VC

1

2

3

VC Status Table

N

E

W

S

I

Route

Computation

DataIn

InBuf

Controller
Put Take

DataOut

DataOut

DataOut

DataOut

DataOut

Output Winner

VCREQUEST FIFO

LOCAL

SOUTH

WEST

EAST

NORTH VC Allocator
VC Request

VC Allocation

Switch Allocator

SW Selections

Full Empty

VCID

Valid Data

VCFull[NumVC]
VCRelease[NumVC]

VC Allocation

Congestion

Table

Congestion Info From

Other VC Status TableCongestion Info

To Other Routers

Congestion Info

From Other Routers

Figure 3.4 Adaptive Router’s Input Buffer

Path makes use of the crossbar demand to estimate the channel congestion condition. In

crossbar demand metric, a number system is used to represent the congestion condition. The

congestion number of link d at the router (x,y) C(x,y),d equals the number of packets in the

router requesting link d.

Suppose two packets are routed to the North from the South and three packets are routed

to the North from the East at router (1,2), C(1,2),East = 2 + 3 = 5

www.manaraa.com

34

Table 3.4 Six routes from location (2,2) to location (0,4)

Choice Path Stop 0 Stop 1 Stop 2 Stop 3 OE Viol. Even Odd

1 WWNN (2,2) (1,2) (0,2) (0,3) Free Free N,S

2 WNWN (2,2) (1,2) (1,3) (0,3) Even Free N,S

3 WNNW (2,2) (1,2) (1,3) (1,4) Even Free N,S

4 NWWN (2,2) (2,3) (1,3) (0,3) Odd W Free

5 NWNW (2,2) (2,3) (1,3) (1,4) Both W Free

6 NNWW (2,2) (2,3) (2,4) (1,4) Odd W Free

3.3.2 Adaptive Unicast Route Decision

In Path-based adaptive routing, each path (p) from the router to the packet destination has

a cost (Costp).

Costp =
∑

Ci when p is a valid path where i is the link along p.

A valid path is a path obeying the Odd-Even Turn Model ’s turn restrictions.

Costp = ∞ when p is an invalid path.

Path-based adaptive routing compares the costs (Costp) of each path (p) from the current

router to the packet destination and routes the packet along the first link of the path with a

lowest cost.

Figure 3.5 Routes from (2,2) to (0,4)

For example, to route a packet from router (2,2) to router (0,4), there are six minimal

www.manaraa.com

35

paths (Fig. 3.5 and Table 3.4). In path 1, the packet traverses to the West at router (2,2).

Then, it traverses to the West at router (1,2), to the North at router (0,2) and to the North

at router (0,3). Finally, it arrives at the the destination router (0,4). In these six paths (Fig.

3.5), only path 1, 4 and 6 are valid. Path 2, 3 and 5 violate the Odd-Even Routing Model ’s

turn restrictions [10]. Costp1 = C(2,2),West + C(1,2),West + C(0,2),North + C(0,3),North,

Costp2 = ∞,

Costp3 = ∞,

Costp4 = C(2,2),North + C(2,3),West + C(1,3),West +C(0,3),North,

Costp5 = ∞,

Costp6 = C(2,2),North + C(2,3),North + C(2,4),West + C(1,4),West.

Note that the packet is only required to follow the first link of the chosen path. The down-

stream routers will make the following routing decisions according to their own congestion

number.

Origin

(xh,yl)(xl,yl)

(xh,yh)(xl,yh)

Data Wire

Congestion

Status Wire

66.14Kλ

Figure 3.6 Congestion Observation Window 5× 5

Each router obtains the downstream routers’ congestion information through the dedicated

congestion information wires (Fig. 3.6). In Odd-Even Routing Model, the number of path from

the source (xsrc, ysrc) to the destination (xdest, ydest) is approximately
(dy+h)!
dy !h!

where h = ⌈dx2 ⌉,

dx = |xdest−xsrc|, dy = |ydest−ysrc|. Fig. 3.7 and Fig. 3.8 show the number of valid path from

www.manaraa.com

36

15 5 5 1 1 1 5 5 15

10 4 4 1 1 1 4 4 10

6 3 3 1 1 1 3 3 6

3 2 2 1 1 1 2 2 3

1 1 1 1 Origin 1 1 1 1

3 2 2 1 1 1 2 2 3

6 3 3 1 1 1 3 3 6

10 4 4 1 1 1 4 4 10

15 5 5 1 1 1 5 5 15

Figure 3.7 Num. of Valid Path (Odd)

15 15 5 5 1 5 5 15 15

10 10 4 4 1 4 4 10 10

6 6 3 3 1 3 3 6 6

3 3 2 2 1 2 2 3 3

1 1 1 1 Origin 1 1 1 1

3 3 2 2 1 2 2 3 3

6 6 3 3 1 3 3 6 6

10 10 4 4 1 4 4 10 10

15 15 5 5 1 5 5 15 15

Figure 3.8 Num. of Valid Path (Even)

an origin to a destination within a 9× 9 window where the origin is in an odd column and an

even column respectively. The number of valid paths grows as the distance between the origin

and the destination increases. In an extreme case, the number of valid paths from router (0, 0)

to router (29, 29) is (44)!
29!15! = 2.3× 1011. To compare the costs of all 2.3× 1011 paths, the route

computation unit needs to be humongous and Route Computation stage needs to be extremely

long. In fact, it is even infeasible for a router to have all of the link congestion information in

the grid due to delay and energy consumption of the abnormally long wires. Therefore, the

congestion observation window in each router is somehow limited.

Origin

7x7

5x5

3x3

Figure 3.9 Observation Window

Even though a bigger observation window (Fig. 3.9) always leads to better routing re-

sult, its marginal gain diminishes quickly. The reason is that the actual congestion condition

encountered by the packet at a distanced router could be different from the stale congestion in-

www.manaraa.com

37

formation from an earlier time. The accuracy in estimating the congestion condition decreases

as the distance between the link and the router increases.

In Path, a 5×5 observation window is used. Empirical studies show that a 5×5 observation

window is one of the feasible observation window sizes which leads to significant network

performance gain compared with non-adaptive routing. The details of the studies are shown

in section 3.4.4.

In synthetic traffic:

1. A network with a 5 × 5 observation window has an average of 50% higher maximum

throughput compared with a network with a 3× 3 observation window.

2. A network with a 7 × 7 observation window has an average of 7% higher maximum

throughput compared with a network with a 5× 5 observation window.

3. A network with a 9 × 9 observation window has an average of 2.9% higher maximum

throughput compared with a network with a 7× 7 observation window.

In an on-chip video system:

1. A network with a 5×5 observation window is able to complete an average of 15.5% more

co-processings than a network with a 3× 3 observation window.

2. A network with a 7×7 observation window is able to complete an average of 2.26% more

co-processings than a network with a 5× 5 observation window.

3. A network with a 9×9 observation window is able to complete an average of 1.11% more

co-processings than a network with a 7× 7 observation window.

Another reason a 5× 5 observation window is used is to prevent Route Computation stage

from slowing down the router clock cycle. The Route Computation path increases as the

observation window enlarges. The Route Computation path in a 5× 5 observation window is

just a little bit shorter than the Switch Allocation path which is the router’s critical path.It

allows Path-based Adaptive Router to run as fast as a basic unicast router.

www.manaraa.com

38

When the observation window increases to a certain size, the wire delay could prohibit the

downstream routers from sending congestion information to the current router in the same

clock cycle. A 5× 5 observation window does not have this problem.

As each router has a limited size of the congestion observation window, some destinations

might be located outside. To handle these outside destinations, a virtual destination is in-

troduced. Suppose a packet has a destination (x, y), the router assumes it has a a virtual

destination (Vx, Vy). Each router has an observation window (xl, yl), (xl, yh), (xh, yl), (xh, yh)

(Fig. 3.6),

Vx(Vy) = xl(yl) if x < xl(y < yl)

Vx(Vy) = x(y) if xl ≤ x ≤ xh(yl ≤ y ≤ yh)

Vx(Vy) = xh(yh) if x > xh(y > yh)

Using this method, the packet keeps traversing until the actual destination is no longer outside

of the window where a virtual destination is not needed.

Figure 3.10 Virtual Destinations

The congestion information wires required by Path with 5×5 observation window is shown

in Table 3.5. This table compares the number of congestion information wires needed by

Path, XY-routing and RCA (Quad) using 9-bit precision with 50/50 local/remote congestion

weighting.

www.manaraa.com

39

Table 3.5 Congestion Status Wire Comparison

Routing Algorithm # Congestion Wires (In/Out) Overhead (64-bit/128-bit)

XY 0/0 0%/0%

RCA Quad 72/72 11.25%/5.625%

Path 5× 5 (Even:155/Odd:160)/20 27.73%/13.86%

3.4 Experiments

Path-based Adaptive Routing algorithm is tested by both synthetic traffic [14] and video

on-chip system built from many FPGAs with a 2D Mesh network. Details about the video

on-chip system are given in Chapter 7.

3.4.1 Synthetic Traffic

The synthetic traffic patterns used are uniform traffic pattern, transpose traffic pattern and

transpose2 traffic pattern. In uniform traffic pattern, each IP randomly selects a destination

at the beginning of the simulation. In transpose traffic pattern, each IP (x,y) has a destination

at IP (Gsize − 1− y,Gsize − 1− x) where Gsize is the grid size of the 2D mesh network. In

transpose2 traffic pattern, each IP (x,y) has a destination at IP (y,x).

0

50

100

150

200

250

300

0 200000 400000 600000 800000 1000000 1200000

A
v
e

ra
g

e
 P

a
ck

e
t

A
rr

iv
a

l
T

im
e

Arrival Data Flits

General Avg Packet Arrival Time

V.S. # Arrival Data Flits Plot

Figure 3.11 General Avg. Packet Arrival Time V.S. # flits arrival Plot

www.manaraa.com

40

During simulation, each IP sends some packets to its destination at a random time per a

certain time interval. Parameter S is used to represent the length of the time interval. Network

congestion condition can be controlled by changing S. The average packet arrival time (packet

latency) and the number of arrived packets during simulation were recorded. Fig. 3.11 shows

a typical graph of average packet arrival time versus number of arrived packets. This graph is

created from multiple simulations with different S values. When S decreases, each IP sends

its packets more frequently. As a result, the number of arrived packets increases. The network

also becomes more congested as S decreases. Thus, the average packet arrival time increases.

There is a limit in the number of arrived packets. When it reaches the limit, the average packet

arrival time is very high. At that point, the network saturates. The limit on the number of

arrived packets would be the maximum throughput of the network.

3.4.2 Simulation Parameters

Simulation parameters are shown in Table 3.6.

Table 3.6 Baseline simulation parameters

Grid Size 20× 20

Synthetic Traffic Simulation Cycles 30, 000

Video System Simulation Cycles 20, 000, 000

Num. Virtual Channels on each port 3

Num. Samples 5

Flit Width 128− bit

Packet Length 10 flits

Path-Based Adaptive Routing observation window 5× 5

RCA Adaptive Routing Type 9− bit Quadrant

3.4.3 Path-Based Adaptive Unicast Routing Experiments

In this section, the unicast router performances among XY-routing, Path-Based Adap-

tive Routing, DyXY Adaptive Routing and Regional Congestion Aware Adaptive Routing are

compared. To compare the maximum throughput and average packet arrival time, network

www.manaraa.com

41

simulations were performed with uniform, transpose and transpose2 traffic patterns. For each

synthetic traffic patterns, four network simulations were performed using different routing al-

gorithms. To compare the on-chip video system performance, four network simulations using

different routing algorithms were performed.

3.4.3.1 Synthetic Traffic

The uniform traffic result is shown in Table 3.7. The transpose traffic result is shown in

Table 3.8. The transpose2 traffic result is shown in Table 3.9.

Table 3.7 Unicast Maximum Throughput and Packet Arrival Time Comparison
(Uniform Traffic)

Route Type Packet Emission Rate #Data Flits Arrived Avg. Packet Arrival Time
(Flits/1000 Cycles)

DYXY 4 38830 115.6102418
DYXY 20 192834 117.9263686
DYXY 40 384976 122.8249662
DYXY 60 579192 151.8655148
DYXY 80 583326 438.0845356

PATH 4 38830 115.6230998
PATH 20 192828 117.9965218
PATH 40 384942 122.8696196
PATH 60 578368 129.0098318
PATH 80 773556 138.0447192
PATH 100 963052 151.7619542
PATH 120 1005048 378.9351336

RCA 4 38832 115.8770748
RCA 20 192814 119.5187108
RCA 40 384956 126.5921642
RCA 60 578344 135.315809
RCA 80 704878 186.3254718

XY 4 38830 115.7923838
XY 20 192832 118.2180048
XY 40 384954 123.0518178
XY 60 578370 129.1828942
XY 80 771948 145.2329162
XY 100 911358 220.6122842
XY 120 918114 337.1739802

Fig. 3.12 compares the maximum throughput among the four routing algorithms. It shows

www.manaraa.com

42

Table 3.8 Unicast Maximum Throughput and Packet Arrival Time Comparison
(Transpose Traffic)

Route Type Packet Emission Rate #Data Flits Arrived Avg. Packet Arrival Time
(Flits/1000 Cycles)

DYXY 4 37040 119.1213526
DYXY 20 183352 122.7288478
DYXY 40 366686 132.1529418
DYXY 60 492770 356.809355

PATH 4 37036 119.0768918
PATH 20 183340 122.0896192
PATH 40 366706 127.2761332
PATH 60 551144 134.500288
PATH 80 733658 145.479022
PATH 100 914120 199.8641612
PATH 120 957992 287.6338648

RCA 4 37038 119.3035784
RCA 20 183356 124.3778648
RCA 40 366734 133.1998434
RCA 60 551084 147.5922776
RCA 80 706430 247.6608324

XY 4 37038 119.0432638
XY 20 183334 122.4009914
XY 40 366682 129.0420652
XY 60 551182 148.6774014
XY 80 667292 273.3474678

www.manaraa.com

43

Table 3.9 Unicast Maximum Throughput and Packet Arrival Time Comparison
(Transpose2 Traffic)

Route Type Packet Emission Rate #Data Flits Arrived Avg. Packet Arrival Time
(Flits/1000 Cycles)

DYXY 4 37076 118.5996482
DYXY 20 183404 121.7919792
DYXY 40 366720 130.0294158
DYXY 60 550556 158.408553
DYXY 80 698788 230.02403
DYXY 100 762268 321.4106814

PATH 4 37074 118.6837524
PATH 20 183406 121.8029222
PATH 40 366710 127.2714288
PATH 60 551210 134.776862
PATH 80 733740 145.7384672
PATH 100 915420 204.3813364
PATH 120 958946 289.7001492

RCA 4 37076 118.860271
RCA 20 183418 123.2147042
RCA 40 366694 130.4797152
RCA 60 551264 140.6497392
RCA 80 719738 201.2966292

XY 4 37076 118.7819766
XY 20 183406 122.2703378
XY 40 366702 129.1163658
XY 60 551350 147.2139512
XY 80 669072 271.1154458

www.manaraa.com

44

Path-based Adaptive Routing has a better performance than other adaptive routing algorithms

and XY-Routing algorithm. On average, Path-based Adaptive Routing ’s maximum throughput

is 58.9% higher than DyXY-routing, 37.1% higher than RCA-routing and 29.6% higher than

XY-routing.

0

200000

400000

600000

800000

1000000

1200000

Uniform Transpose Transpose2

D
a

ta
 F

li
ts

Traffic Type

Maximum Throughput

XY

DYXY

RCA

Path

Figure 3.12 Unicast Maximum Throughput Comparison

Fig. 3.12 compares the average packet arrival time among the four routing algorithms.

The data is recorded when the number of arrival flits is 579192 in uniform traffic, 366686 in

transpose traffic and 550556 in transpose2 traffic. It shows Path-based Adaptive Routing has a

better performance than other adaptive routing algorithms and XY-Routing algorithm. Path-

based Adaptive Routing ’s packet latency is 11.6% lower than DyXY-routing, 4.43% lower than

RCA-routing, 3.55% lower than XY-routing.

3.4.3.2 Video System on FPGAs with 2D Mesh Network

The video system used in this section is explained in Chapter 7. A co-processing request

queue for the video system is randomly generated. The configuration bitstream size of each

CLB group is 2.2 Mbits which equals 18,000 128-bit packets. The runtime (RT) and config-

uration time (CT) are measured in cycles and the energy is measured in nJ . Configuration

time is the elapsed time interval between the system issuing reconfiguration signals until all

tile reconfiguration is complete. Runtime is the time interval from when all tile reconfiguration

www.manaraa.com

45

0

20

40

60

80

100

120

140

160

180

Uniform Transpose Transpose2

C
y

c
le

s
Traffic Type

Average Packet Arrival Time

XY

DYXY

RCA

Path

Figure 3.13 Unicast Average Packet Arrival Time Comparison

is complete to when all data is processed. Note that runtime excludes configuration time.

Table 3.10 and Fig. 3.14 compare the number of co-processor executions during simulation.

System throughput of Path-Based Adaptive Routing is 13% higher than XY-routing, 16% higher

than DYXY-routing and 16% higher than RCA-routing.

Table 3.10 Unicast Average Co-processing Runtime Comparison (Video

System)

Route Type Num. Co-processor Executions

M4EB M4EV M2E M4DB M4DV M2D Total

DYXY 309 304 350 374 362 292 1991

PATH 373 347 387 419 414 361 2301

RCA 305 309 353 366 355 289 1977

XY 322 315 354 370 355 316 2032

Table 3.11 and Fig. 3.15 compare the average co-processor runtime among the four routing

algorithms. The average co-processor runtime of Path-Based Adaptive Routing is 10.4% lower

than XY-routing, 10.7% lower than DYXY-routing and 9.7% lower than RCA-routing.

www.manaraa.com

46

0

500

1000

1500

2000

2500

XY Path DYXY RCA

Routing Algorithms

Number of Acceleration Completed

M2D

M4DV

M4DB

M2E

M4EV

M4EB

Figure 3.14 Unicast Number of Co-processor Executions Comparison

Table 3.11 Unicast Average Co-processor Runtime Comparison (Video

System)

Route Type Average Co-processor Runtime (Cycles)

M4EB M4EV M2E M4DB M4DV M2D Total

DYXY 1002624 1043602 821314 420215 415744 597043 4300544

PATH 869778 884098 715738 402521 407252 561336 3840726

RCA 982214 1005695 796662 452887 448847 568407 4254714

XY 950209 956262 795352 478222 497546 605913 4283507

0

1000000

2000000

3000000

4000000

5000000

XY Path DYXY RCA

Routing Algorithms

Avg. Acceleration Runtime

M2D

M4DV

M4DB

M2E

M4EV

M4EB

Figure 3.15 Unicast Average Co-processor Runtime Comparison

www.manaraa.com

47

3.4.4 Path-based Adaptive Routing Observation Window Size

Congestion observation window of Path-based Adaptive Routing affects network perfor-

mance. This section presents the effect of observation window size on network maximum

throughput and packet arrival time.

3.4.4.1 Synthetic Traffic

The uniform traffic result is shown in Table 3.12. The transpose traffic result is shown in

Table 3.13. The transpose2 traffic result is shown in Table 3.14.

Fig. 3.16 compares maximum throughputs of networks with different observation windows.

Fig. 3.17 compares the average packet arrival times of networks with different observation

windows. In Fig. 3.17, the packet arrival time is recorded when the number of arrived flits

is 578338 in uniform traffic, 531654 in transpose traffic and 533178 in transpose2 traffic.

Results show observation window extension can increase network maximum throughput. A

network with a 5× 5 observation window has an average of 50% higher maximum throughput

compared with a network with a 3×3 observation window. A network with a 7×7 observation

window has an average of 7% higher maximum throughput compared with a network with a

5× 5 observation window. A network with a 9× 9 observation window has an average of 2.9%

higher maximum throughput compared with a network with a 7× 7 observation window.

0

200000

400000

600000

800000

1000000

1200000

1400000

Uniform Transpose Transpose2

D
a

ta
 F

li
t
s

Traffic Type

Maximum Throughput

3x3

5x5

7x7

9x9

Figure 3.16 Range Test: Maximum Throughput Comparison

www.manaraa.com

48

Table 3.12 Range Test: Maximum Throughput and Packet Arrival Time Com-
parison (Uniform Traffic)

Route Type Packet Emission Rate #Data Flits Arrived Avg. Packet Arrival Time
(Flits/1000 Cycles)

3x3 4 38830 115.8515914
3x3 20 192852 118.7588418
3x3 40 384916 124.877437
3x3 60 578338 136.0297974
3x3 80 765136 190.5885232

5x5 4 38830 115.6230998
5x5 20 192828 117.9965218
5x5 40 384942 122.8696196
5x5 60 578368 129.0098318
5x5 80 773556 138.0447192
5x5 100 963052 151.7619542
5x5 120 1005048 378.9351336

7x7 4 38830 115.6076324
7x7 20 192832 118.0267134
7x7 40 384952 122.8356854
7x7 60 578362 128.890311
7x7 80 773550 137.3567828
7x7 100 963032 148.1870066
7x7 120 1127302 261.9004008

9x9 4 38830 115.5833118
9x9 20 192838 117.8825922
9x9 40 384962 122.694256
9x9 60 578332 128.7235692
9x9 80 773604 136.917193
9x9 100 963064 146.8375398
9x9 120 1162988 188.8769778

www.manaraa.com

49

Table 3.13 Range Test: Maximum Throughput and Packet Arrival Time Com-
parison (Transpose Traffic)

Route Type Packet Emission Rate #Data Flits Arrived Avg. Packet Arrival Time
(Flits/1000 Cycles)

3x3 4 37034 119.2555122
3x3 20 183368 123.41445
3x3 40 366720 137.0805984
3x3 60 531654 189.3443522
3x3 80 639554 267.1301784
3x3 90 655810 309.9049378

5x5 4 37036 119.0768918
5x5 20 183340 122.0896192
5x5 40 366706 127.2761332
5x5 60 551144 134.500288
5x5 80 733658 145.479022
5x5 100 914120 199.8641612
5x5 120 957992 287.6338648

7x7 4 37036 119.1206504
7x7 20 183332 122.2491402
7x7 40 366742 127.2877954
7x7 60 551092 134.052625
7x7 80 733668 143.687269
7x7 100 915332 179.0042892
7x7 120 999742 284.0542892

9x9 4 37038 119.0864214
9x9 20 183346 122.2038326
9x9 40 366726 127.2808882
9x9 60 551150 133.9389228
9x9 80 733666 142.9822276
9x9 100 915916 162.1787254
9x9 120 1018724 295.3489546
9x9 130 1032072 313.8605354

www.manaraa.com

50

Table 3.14 Range Test: Maximum Throughput and Packet Arrival Time Com-
parison (Transpose2 Traffic)

Route Type Packet Emission Rate #Data Flits Arrived Avg. Packet Arrival Time
(Flits/1000 Cycles)

3x3 4 37076 118.8126392
3x3 20 183412 122.8528608
3x3 40 366728 136.7041812
3x3 60 533178 188.025601
3x3 80 554028 381.648575

5x5 4 37074 118.6837524
5x5 20 183406 121.8029222
5x5 40 366710 127.2714288
5x5 60 551210 134.776862
5x5 80 733740 145.7384672
5x5 100 915420 204.3813364
5x5 120 958946 289.7001492

7x7 4 37074 118.6933874
7x7 20 183430 121.9664144
7x7 40 366742 127.4098182
7x7 60 551230 134.417394
7x7 80 733710 144.0128382
7x7 100 915508 180.514023
7x7 120 1000578 283.7320486

9x9 4 37074 118.6504004
9x9 20 183426 121.93559
9x9 40 366728 127.418946
9x9 60 551254 134.289491
9x9 80 733678 143.3529208
9x9 100 915802 163.4646664
9x9 120 1018724 294.4350372
9x9 125 1025410 305.1481938

www.manaraa.com

51

0

50

100

150

200

Uniform Transpose Transpose2

C
y

c
le

s
Traffic Type

Average Packet Arrival Time

3x3

5x5

7x7

9x9

Figure 3.17 Range Test: Average Packet Arrival Time Comparison

3.4.4.2 Video System on FPGAs with 2D Mesh Network

The video system used in this section is explained in Chapter 7. A co-processing request

queue for the video system is randomly generated. The configuration bitstream size of each

CLB group is 2.2 Mbits which equals 18,000 128-bit packets. The runtime (RT) and config-

uration time (CT) are measured in cycles and the energy is measured in nJ . Configuration

time is the elapsed time interval between the system issuing reconfiguration signals until all

tile reconfiguration is complete. Runtime is the time interval from when all tile reconfiguration

is complete to when all data is processed. Note that runtime excludes configuration time.

Table 3.15 and Fig. 3.18 compare the number of co-processor executions during the simula-

tion. Results show that observation window extension can increase the network performance.

A network with a 5× 5 observation window is able to complete an average of 15.5% more co-

processings than a network with a 3×3 observation window. A network with a 7×7 observation

window is able to complete an average of 2.26% more co-processings than a network with a

5× 5 observation window. A network with a 9× 9 observation window is able to complete an

average of 1.11% more co-processings than a network with a 7× 7 observation window.

www.manaraa.com

52

Table 3.15 Range Test: Average Co-processor Runtime Comparison

(Video System)

Route Type Num. Co-processor Executions

M4EB M4EV M2E M4DB M4DV M2D Total

3x3 311 306 348 365 357 304 1991

5x5 373 347 387 419 414 361 2301

7x7 380 355 406 428 426 358 2353

9x9 386 365 421 420 425 362 2379

0

500

1000

1500

2000

2500

3x3 5x5 7x7 9x9

Observation Window

Number of Acceleration Completed

M2D

M4DV

M4DB

M2E

M4EV

M4EB

Figure 3.18 Range Test: Num. of Co-processor Executions Comparison

www.manaraa.com

53

CHAPTER 4. Adaptive Multicast Router

4.1 Motivation

Beside unicast packet (one-to-one communication), multicast packet (one-to-many) is an-

other common type of packets used in on-chip network. In chip-level microprocessor, memory

coherence packet and data packet are multicast from one microprocessor’s cache to some other

microprocessors’ caches sharing the same cache line. In an on-chip system, data is sent from

one data producing IP to multiple data consuming IPs. In an on-chip system built from many

FPGAs connected using 2D mesh network, a single configuration bitstream are multicast from

the I/O to multiple FPGA tiles for high speed reconfiguration. Without native multicast sup-

port, the network interface has to copy the multicast packets several times and send each copy

to its destination one by one. It is time consuming and inefficient. The goal of a native mul-

ticast support is to reduce network load and decrease multicast packet latency. In addition, a

combination of multicast and adaptive routing allows routers to further reduce network load

and packet latency by dynamic packet divergence point selection. One challenge in imple-

menting a native multicast router is to keep the network free from deadlock. In this chapter,

the adaptive unicast router from the last chapter is modified to support adaptive multicast

routing. A novel address-data FIFO decoupling approach is proposed to keep the network free

from multicast deadlock.

4.2 Adaptive Multicast Decoder

This section discusses the operation of multicast decoder in detail. To support multicast

routing, a multicast decoder is added to the router. This multicast decoder can be shared by

all virtual channels on all ports in the router. In a system with high multicast needs, each

www.manaraa.com

54

virtual channel could have its own multicast decoder. Each multicast decoder has a multicast

destination map to store packet destinations. Each slot in the map represents one tile on the

chip.

x x

x

x

x x

(a) Cycle 1 (b) Cycle 2 (c) Cycle 3

Flit1 (4,4)

Flit2 (3,1)

Flit3 (1,1)

Figure 4.1 Multicast (Binary) Decoding

Fig. 4.1 shows an example of packet decoding with three addresses in a 5×5 2D mesh grid.

The packet addresses are encoded in binary multicast code. Each Head flit has one address.

The decoder reads the Head flits one by one and marks their destinations on the multicast

map. Once the first Body flit has arrived, the multicast decoder starts making route decision.

x x x

x

x x

x

x x

(a) Cycle 1 (b) Cycle 2 (c) Cycle 3

(d) Cycle 4 (e) Cycle 5

Flit1 00001

Flit2 00000

Flit3 00000

Flit4 01010

Flit5 00000

Figure 4.2 Multicast (Unary) Decoding

Fig. 4.2 shows an example of packet decoding with three addresses in a 5 × 5 2D mesh

grid. The packet addresses are encoded in the unary multicast code. Each Head flit contains

www.manaraa.com

55

one row of destinations. The decoder reads the Head flit and marks the destinations on the

multicast map. It takes five cycles to process all the destinations. Once the first Body flit has

arrived, the multicast decoder starts making route decision.

4.3 Dynamic Multicast Packet Divergence Point Selection

The collaboration of adaptive routing and multicast support allows dynamic divergence

point selection. Compared with XY multicast router which has fixed packet divergence point,

a router with dynamic divergence point selection has better network performance. Fig. 4.3

compares the packet multicast paths chosen by XY-Routing and adaptive routing. Tile (0,0)

sends a multicast packet to tile (1,4), tile (2,4), tile (3,4), and tile (4,4). Packet route is

predetermined using XY-routing. The packet diverges at routers (1,0), (2,0), (3,0) and (4,0)

respectively. Adaptive multicast router can select the divergence points at routers (1,4), (2,4),

(3,4) and (4,4). The network load created by the adaptive routing is 2.5 times lower than

XY-routing. Adaptive multicast router reduces network load and energy consumed by buffer

writes.

R R

R R

R R

R

R

R

R R

R R

R

R

R R

R R

R R

R R

R R

R R

R R

R R

R

R

R

R R

R R

R

R

R R

R R

R R

R R

R R

(a) XY Multicast Tree (b) Adaptive Multicast Tree

(1,0)

(0,0)

Figure 4.3 Multicast Comparison: (a) XY-Routing, (b) Adaptive Routing

4.4 Adaptive Multicast Route Decision

In adaptive multicast routing, the route computation unit decides where to diverge a packet

based on the destinations. A simple and efficient method is needed to implement multicast

www.manaraa.com

56

routing without increasing router’s clock cycle. The main objective is to diverge a multicast

packet as late as possible to reduce network load. First, the decoder identifies the regions

holding the destinations. Then, it diverges the packet according to a lookup table. It takes

less than a single cycle to complete these two steps.

4.4.1 Region Identification

Q2

O

N

S

E

Q1

Q4

W

Q3

O

N

S

E

Q1

Q4

W

(a) (b)

Figure 4.4 Region Identifying: (a) even column, (b) odd column

After marking the addresses on the multicast map, the router identifies which regions cover

the multicast destinations. All destinations are mapped to either one of the five cardinal regions

(the North, the East, the West, the South and Local) or one of the four quadrant regions (Q1,

Q2, Q3 and Q4). If a destination is in the North, the East, the West, the South or Local

regions, it is a cardinal destination. If a destination is in Q1, Q2, Q3 or Q4 regions, it is a

quadrant destination. The region identifier creates a 9-bit vector to indicate which region is not

empty. As Odd-Even Turn Model is applied to avoid deadlock in adaptive routing, the region

identifying method needs to be modified accordingly. Fig. 4.4 (a) shows the region identifying

method for the routers in odd column. Fig. 4.4 (b) shows the region identifying method for

the routers in even column. Two observations should be noticed from the figures. The first

one is that there are no Q2 and Q3 in the routers in odd column. A router in odd column with

coordinate (x, y) considers all destinations with coordinate (x− a, y± b) as destinations in the

West region, where a, b are any positive integers. Because a packet going to the North or the

South in a router in odd column cannot go to the West, all packets in routers in odd column

cannot go to Q2 and Q3. The second observation is that the North and the South regions are

www.manaraa.com

57

extended by one column to the East in the routers in odd column. A router in odd column

with coordinate (x, y) considers all destinations with coordinates (x, y + a),(x + 1, y + a) as

destinations in the North region and all destinations with coordinates (x, y − a),(x+ 1, y − a)

as destinations in the South region where a is any positive integer. Because a packet going to

the East in a router in odd column cannot go to the North and the South in the next router,

all packet which have destinations (x+1, y+a) needs to go to the North and all packets which

have destinations (x+ 1, y − a) needs to go to the South.

4.4.2 Route Lookup Table

After the region identifying process, the router decides the packet routing directions. The

router makes route decision according to a lookup table. The pro is a quick decision can be

made. The con is network load cannot be minimized because the distances between destinations

to destinations and destinations to router are not being considered. As mentioned before, the

lookup table is designed to diverge packets as late as possible. The table reads the 9-bit vector

created in the region identifying process and creates a 5-bit (N, E, W, S, L) route decision

output.

To achieve minimal routing, a packet with cardinal destinations can only be routed in

one direction while a packet with quadrant destinations can be routed either in x-direction or

y-direction (Dx,Dy).

Q2

O

N

S

E

Q1

Q4

W

Q3

Figure 4.5 Rule 1 example

The lookup table is created using the following rules:

www.manaraa.com

58

Q2

O

N

S

E

Q1

Q4

W

Q3

Figure 4.6 Rule 2 example

Q2

O

N

S

E

Q1

Q4

W

Q3

Q2

O

N

S

E

Q1

Q4

W

Q3

Figure 4.7 Rule 3 example

1. If a packet has cardinal destinations, it will be routed to the direction same as the region.

(Fig. 4.5)

2. If a packet has quadrant destinations and another cardinal destination in the direction

Dx or Dy, it will be routed to Dx or Dy where Dx has a higher priority than Dy. (Fig.

4.6)

3. If a packet has quadrant destinations but does not have any cardinal destinations in the

direction Dx nor Dy, it will be routed according to a Quadrant Routing Table (Table

4.1) (Fig. 4.7).

The Quadrant Routing Table (Table 4.1) combines all unrouted quadrant destinations in

two connected quadrants using their common direction Dx or Dy to route the destinations to

Dx or Dy. For example, there is a packet with destinations in Q1 and Q4 which could not

be routed using Rule 2 because the packet has no destinations in the North, the East and the

South. The East is their common direction Dx. Therefore, destinations in Q1 and Q4 will be

routed to the East.

www.manaraa.com

59

Table 4.1 Quadrant Route Target Table

Unrouted Quad. Dest. Route Targets

Q1 Q2 Q3 Q4 N E W S (Vx, Vy)

0 0 0 0 0 0 0 0 NIL

0 0 0 1 0 0 0 0 Q4 : (xh, yl)

0 0 1 0 0 0 0 0 Q3 : (xl, yl)

0 0 1 1 0 0 0 1 NIL

0 1 0 0 0 0 0 0 Q2 : (xl, yh)

0 1 0 1 0 0 0 0 Q2 : (xl, yh), Q4 : (xh, yl)

0 1 1 0 0 0 1 0 NIL

0 1 1 1 0 0 1 0 Q4 : (xh, yl)

1 0 0 0 0 0 0 0 Q1 : (xh, yh)

1 0 0 1 0 1 0 0 NIL

1 0 1 0 0 0 0 0 Q1 : (xh, yh), Q3 : (xl, yl)

1 0 1 1 0 1 0 0 Q3 : (xl, yl)

1 1 0 0 1 0 0 0 NIL

1 1 0 1 0 1 0 0 Q2 : (xl, yh)

1 1 1 0 0 0 1 0 Q1 : (xh, yh)

1 1 1 1 0 1 1 0 NIL

Some quadrant destinations could not be combined with other quadrant destinations in a

connected quadrant. The first reason is the absence of quadrant destinations in a connected

quadrant For example, the packet only has destinations in Q1. The second reason is the

quadrant destinations are isolated from others. For example, the packet has destinations at

Q1, Q2 and Q3. Destinations in Q2 and Q3 are routed to the common Dx (the West). It

leaves destinations in Q1 being isolated.

The packet with these isolated quadrant destinations will be routed adaptively as a unicast

packet using a virtual address (Vx, Vy). (Vx, Vy) is the corner of the observation window in

that quadrant. For example, a packet having all destinations in Q1 will be routed using

virtual address (xh, yh). (xh, yh) is the upper-right corner in the congestion window shown

in Fig. 3.6. Note that the routing decision is made in one cycle once the first Body flit has

arrived.

When a packet diverges, two or more packets traverse to different directions. The Head

www.manaraa.com

60

x

O

x x

O

x

x

O

x

To

East

To

West

addr 0: (1,1)
addr 1: (3,1)
addr 2: (4,4)

addr 0: (1,1)
addr 0: (3,1)
addr 1: (4,4)

Figure 4.8 Packet Address Modification Example

flits in all diverged packets have to be modified to remove the destinations which belong to

the other packets. This modification occurs when the Head flits leave their virtual channels.

In binary-coded multicast routing, a flit modifier in the router invalidates the Head flits with

addresses which do not belong to the traversing direction. Fig. 4.8 shows a flit invalidation

example. In this example, a router has decided to route a packet with destinations in Q1 and

Q4 to the East and destinations in Q3 to the West. When a Head flit leaves its virtual channel

to traverse to the East, the flit modifier invalidates the flit if it contains a destination in Q3.

Head flits with destinations in Q1 and Q4 will pass the flit modifier and continue traversing to

the East. In unary-coded multicast routing, a flit modifier in the router modifies the Head flits

using masks according to the routing decision which was stored in the virtual channel status

table at Route Computation stage. The masks applied on packet address are the same as the

region identifiers (Fig. 4.4).

4.5 Avoiding Multicast Deadlock By Address Data FIFO Decoupling

Multicast deadlock halts the packet flow and make the entire on-chip system unfunctionable.

In section 2.5.2, a multicast deadlock example is given. Several methods to avoid multicast

deadlocks have been proposed. Packet copying method [30] greatly increases the network load.

Hamiltonian path partitioning method [30] does not apply to adaptive routing. Planar network

www.manaraa.com

61

5577

55

55

77

(0,1) (1,1) (2,1) (3,1)

55 out

77

77 in

in

out out

Figure 4.9 Multicast Deadlock Example

method [9] increases physical size of the router because it requires an extra sub-network.

4.5.0.1 Virtual cut-through routing

In fact, there is a simple method to avoid multicast deadlock without adding an extra sub-

network or increasing the number of packet copies. It is to utilize Virtual cut-through routing

instead of wormhole routing which is used by all of the methods mentioned above. Virtual

cut-through routing is free from multicast deadlock because each virtual channel can store an

entire packet. In the earlier multicast deadlock example (Fig. 4.9), the virtual channel on

router (3,1)’s West port can now receive the entire Packet 77 from the virtual channel on the

router (2,1)’s IP Out port. And the virtual channel on router (3,1)’s IP In port can now receive

the entire Packet 77 from the virtual channel in router (3,1)’s West port. The virtual channel

on router (3,1)’s West port will be released and hence, no multicast deadlock will be formed.

4.5.0.2 Address/Data FIFO Decoupling

Although Virtual cut-through can simply avoid multicast deadlock, it requires larger virtual

channel buffer size. Due to limited on-chip space, virtual channel buffer size is usually small.

Compared with Virtual cut-through routing, Wormhole routing is more preferable because it

supports long packet using small virtual channel buffer. To keep both advantages of Virtual

cut-through and Wormhole routing which are the deadlock free network and the small buffer

size, we propose an address/data FIFO decoupling technique in Wormhole routing.

One observation from the multicast deadlock example above is that the virtual channel on

router (3,1)’s West port is empty and it is waiting for a new flit indefinitely.

www.manaraa.com

62

The packet in the virtual channel on router (2,1)’s IP Out port diverges to the virtual

channels on router (1,1)’s East port and router (3,1)’s West port. The flits traversed to the

virtual channel on router (3,1)’s West port successfully traverse to the virtual channel on its

own router’s IP In port. However, the flits traversed to the virtual channel on router (1,1)’s

East port cannot further traverse due to the target virtual channel is occupied by Packet 55.

All flits stored in the virtual channel on router (2,1)’s IP Out port have already traversed to

the virtual channel on router (3,1)’s West port but a copy of the some of these flits stored in

the virtual channel on router (2,1)’s IP Out ’s port are still waiting to traverse to the virtual

channel on router (1,1) East port. These flits staying in the virtual channel on router (2,1)’s

IP Out port stop new flits from coming in and sending out. This left the virtual channel on

router (3,1)’s West port empty and allocated to a packet that does not have new flits.

In fact, the deadlock is broken if Packet 77 releases the virtual channel on router (3,1)’s

West port. However, it is not feasible to release the virtual channel in this situation. The Head

flits of Packet 77 in the virtual channel on router (3,1)’s West port have already traversed to

the virtual channel on router (3,1)’s IP In port. When a virtual channel is released, the routing

information stored in the virtual channel status table is removed. If Packet 77 releases the

virtual channel on router(3,1)’s West port, the Body flits of Packet 77 traversing to the virtual

channel on router (3,1)’s West port after the deadlock is broken will not have any address

information.

To avoid losing the address information, address/data FIFO decoupling in the virtual

channel is applied (Fig. 4.10). Compared with the traditional single FIFO virtual channel

which deletes the flit once the flit has traversed to the downstream router, address/data FIFO

virtual channel stores all packet addresses until the virtual channel is released. It allows the

router to break any packet into two or more packets when a potential deadlock is found.

The FIFO controller (Fig. 4.10) checks every incoming flit to see if it is a Head flit, a Body

flit or a Tail flit. It will be stored in the address FIFO if it is a Head flit and in the data FIFO

if it is not. When a packet traverses to the downstream router, the flits in address FIFO will

leave before the flits in data FIFO.

www.manaraa.com

63

Controller

Addr

Data

Flit in

To switches

FIFO Status

Put

Put/Take

Take

M

Tail Modification

Rejoin VA

Figure 4.10 Decoupled Addr/Data FIFO

Multicast virtual channel’s FIFO has 5 outputs and 5 heads. Each head selects the data

going to the North, the East, the West, the South or Local. The virtual channel breaks a

packet when the last flit coming out from the data FIFO to the direction D is not a Tail flit.

It breaks the packet by changing the last flit from Body flit to Tail flit. At the same time, D

head of the address FIFO is reset. The packet will release the router’s D output port. On the

other hand, a signal (Tail Modification) is sent to notify the virtual channel allocator that the

coming Tail flit is modified from a Body flit to prevent the virtual channel from being released.

When a new flit arrives after the packet is broken, the packet rejoins the Virtual Channel

Allocation (VA) stage to request a new virtual channel in the down-stream router. Because

the routing decision is still available in the current router, Route Computation (RC) stage

is skipped. When a packet has successfully obtained a virtual channel in the downstream

router and an output port, the virtual channel sends the Head flits stored in the address FIFO

followed by the newly arrived data flits to the downstream router. Note that the address FIFO

is large enough to store all Head flits of a packet. Therefore, the virtual channel never changes

any Head flits to Tail flit and it never sends any packet without data flits to the downstream

router.

Fig. 4.11(step 1)-(step 9) show a packet breaking scenario based on the deadlock example

given above (Fig. 4.9). In this example, Packet 77 (Fig. 4.12) is broken at the virtual channel

on router (2,1)’s IP Out port. To avoid confusion, Packet 55 is not discussed in this scenario.

The size of the address FIFO is 2 and the size of the data FIFO is 2. In Fig. 4.11(step 1)-(step

2), Packet 77 at virtual channel on router (2,1)’s IP Out port has already obtained the East

www.manaraa.com

64

5577

55 77

(1,1) (2,1) (3,1)

77

F0(A)

5577

55 77

(1,1) (2,1) (3,1)

77

5577

55 77

(1,1) (2,1) (3,1)

77

5577

55 77

(1,1) (2,1) (3,1)

77

5577

55 77

(1,1) (2,1) (3,1)

77

F1(A)

77

77

77

77

F0(A)

F2(B)

Full

F1(A)

F2(B)

F4(B)

F3(B)

F3(B)

5577

55 77

(1,1) (2,1) (3,1)

77

F5(T)

5577

55 77

(1,1) (2,1) (3,1)

77

5577

55 77

(1,1) (2,1) (3,1)

5577

55 77

(1,1) (2,1) (3,1)

55

77

F5(T)

77

77

Full

F4(B)

Full

Full

Step 1

Step 2

Step 3

Step 4: (1,1) East is Full

Step 5

Step 6: (2,1)out does not have F6

Body to Tail Modification

Step 7 Packet 77 Releases (3,1)

West

Step 8: (3,1) West is Free

Step 9: Packet 55 obtains (3,1)

West

Full

Full

F5(B)

Figure 4.11 Packet 77 Break

F0(A) F1(A) F2(B) F3(B) F4(B) F5(B) F6(B) F7(T)

A:Address B:Body T:Tail

Figure 4.12 Packet 77 Sent by the IP at (2,1)

www.manaraa.com

65

output port, the West output port, the virtual channel on router (1,1)’s East port and the

virtual channel on router (3,1)’s West port. The virtual channel on router (2,1)’s IP Out port

sends the flits F0, F1, F2 and F3 to the virtual channels on router (1,1)’s East port and on

router (3,1)’s West port. The virtual channel on router (3,1)’s West port sends the flits to the

IP at the location (3,1) accordingly. As Packet 77 cannot obtain the virtual channel on router

(0,1)’s East port, the virtual channel on router (1,1)’s East port stores the flits traversed from

the virtual channel on router (2,1)’s IP Out port. In Fig. 4.11(step 4), the virtual channel

on router (1,1)’s East port sends a FULL signal to the virtual channel on router (2,1)’s IP

Out port. Starting from Fig. 4.11(step 5), the virtual channel on router (2,1)’s IP Out port

sends the flits F4 and F5 to the virtual channel on router (3,1)’s West port only and keeps

the copies of flits F4 and F5 in its virtual channel. These two flits will traverse to the virtual

channel on router (1,1)’s East port once that virtual channel is free. In Fig. 4.11(step 6), the

virtual channel on router (2,1)’s IP Out port data FIFO sends its last flit F5 to the virtual

channel on router (3,1)’s West port. In this step, the virtual channel on router (2,1)’s IP Out

port breaks the packet by modifying the flit F5 from Body flit to Tail flit and send it to the

virtual channel on router (3,1)’s West port. Packet 77 releases the East output port. In Fig.

4.11(step 7), the virtual channel on router (3,1)’s West port sends the flit F5(T) to the virtual

channel on router (3,1)’s IP In port. As the flit F5(T) is a Tail flit, Packet 77 releases the

virtual channel on router (3,1)’s West port when flit F5(T) leaves the virtual channel (Fig.

4.11(step 8). In (Fig. 4.11(step 9)), Packet 55 can finally obtain the virtual channel on router

(3,1)’s West port and the deadlock is broken.

As the deadlock is broken, Packet 77 at the virtual channel on router (1,1)’s East port will

be able to obtain the virtual channel on router (0,1)’s East port soon. The virtual channel

on router (2,1)’s IP Out port then sends the flits F4 and F5 to the virtual channel on router

(1,1)’s East port and accepts the flits F6 and F7 from the IP at location (2,1). Once the

flit F6 has arrived at the virtual channel on router (2,1)’s IP Out port, Packet 77 requests a

virtual channel on router (3,1)’s West port at Virtual Channel Allocation (VA) stage. When

Packet 77 has obtained the virtual channel on router (3,1)’s West port and the East output

www.manaraa.com

66

77

(2,1) (3,1)

77

F0(A)

77

(2,1) (3,1)

77

77

(2,1) (3,1)

77

F1(A)

77

77

F0(A)F1(A)

F6(B)

(2,1) (3,1)

77

77

F6(B)

(2,1) (3,1)

77

77

F7(T)

77

F7(T)

Step 10: Resend Address Flit F0

Step 11: Resend Address Flit F1

Step 12: Send Data Flit F6

Step 13

Step 14

Figure 4.13 Packet 77 Second Part

F0(A) F1(A) F2(B) F3(B) F4(B) F5(T)

F6(B)F0(A) F1(A) F7(T) A:Address B:Body T:Tail

Figure 4.14 Packet 77 Received by the IP at (3,1)

www.manaraa.com

67

port, the virtual channel on router (2,1)’s IP Out port sends Packet 77 to the virtual channel

on router (3,1)’s West port by sending the Head flits F0 and F1, followed by the data flits F6

and F7 (Fig. 4.13). Finally, IP at location (3,1) receives Packet 77 in two parts (Fig. 4.14).

4.6 The Micro-architecture Changes from the unicast router

There are two main changes in the adaptive multicast router from the adaptive unicast

router.

Flit storage

Flit storage

Flit storage

Flit storage

M

U

X

Controller

DATAOUT[W]

FULL

EMPTY

LAST

CLK

RST

PUT

TAKE

DATAIN[W]

Selection

Flit storage

Flit storage

Flit storage

Flit storage

5

M

U

X

Controller

FULL

EMPTY[5]

LAST[5]

CLK

RST

PUT

DIRTAKE[5]

DATAIN[W]

Selections[5]

DATAOUT_IP[W]

DATAOUT_N[W]

DATAOUT_E[W]

DATAOUT_W[W]

DATAOUT_S[W]

Write/Remove

Write/Remove

SETDIR

MRDECISION[5]

TAKE

Figure 4.15 (a) 1-output FIFO (b) 5-output FIFO

4.6.1 Five output FIFO

Compared with unicast packet which makes only one output port request, multicast packet

can make up to five output port requests. A packet may get all the requested output ports at

different cycles. Therefore, a flit may go to one direction first and then go to other directions

in later cycles. To reduce router physical size, a 5-head, 5-output FIFO instead of five 1-head,

1-output FIFOs is used in the virtual channel. Each head selects a flit to going to one routing

direction. Fig. 4.15 shows the micro-architectures of a 1-output FIFO and a 5-output FIFO.

Both FIFOs have FIFO depth of 4.

When a new packet has arrived and route computation is not complete yet, the FIFO

assumes the data will go to all five directions. After Route Computation (RC) stage, the route

www.manaraa.com

68

computation unit flags the SETDIR signal and uses the MRDECISION signal to reset the

FIFO heads of the directions that the packet will not traverse to. The switch allocator uses

the DIRTAKE signal to select a flit from the virtual channel to traverse to the downstream

router in a specific direction.

MVC0

MVC1

MVC2

MVC3

VC Status Table

N

E

W

S

I

Route

Computer

DataIn

InBuf

Controller
Put Take

DataOut

Output Winner

VCREQUEST FIFO

LOCAL

SOUTH

WEST

EAST

NORTH VC Allocator
VC Request

VC Allocation

Switch Allocator

SW Selections

Fulls Emptys

VCID

Valid Data

VCFull[NumVC]

VCRelease[NumVC]

VC Allocation

Congestion

Table

Congestion Info From

Other VC Status TableCongestion Info

To Other Routers

Congestion Info

From Other Routers

Routed NVCID(IP/N/E/W/S)

0

VC

1

2

3

Q1/Q2/N

Mask

Q1/Q4/E

Q2/Q3/W

Q3/Q4/S
Valid

DIRs

MMap

Qs

Figure 4.16 Adaptive Multicast Input Buffer

4.6.2 Multicast Adaptive Input Buffer

There are several changes in the input buffer of the adaptive multicast router. The route

computation unit is connected to a multicast map (MMAP). The unicast virtual channels are

changed to multicast virtual channels. The virtual channel status table is extended to contain

all NVCIDs in the downstream routers and all full and empty signals of the 5-head FIFOs.

The newly added 9-bit region identifying vectors and route decision are now recorded in the

virtual channel status table. The route decisions are used to control the masks for modifying

www.manaraa.com

69

Head flits when the flits leave the virtual channel.

4.6.3 Experiments

The adaptive multicast router experiment’s details will be given in Chapter 6.

www.manaraa.com

70

CHAPTER 5. Dual-coded Multicast Router with Dynamic Code

Translation

Multicast packet address can be coded in different ways [8]. Unary code has fewer number

of address flits when the number of destinations is high. Binary code has fewer number of

address flits when the number of destinations is low. On-chip router prefers a low number of

address flits because it reduces the packet latency. In order to integrate the advantages of both

of these coding methods, a dual-coded multicast unit which accepts packets coded in either

way is proposed. In addition, a packet using unary code could be trans-coded into binary code

on-the-fly when the number of destinations drops below a threshold level. Multicast code could

be translated into unicast code on-the-fly when the number of destinations drops to 1. These

techniques could reduce packet latency and network load.

5.1 Motivation

Native multicast support can reduce the number of packet copies in an on-chip network. In

an on-chip packet-switched network, each packet contains some address (Head) flits and data

flits (Fig. 5.2). The last data flit is Tail flit. The address flits establish the route for all of

the following flits. They contain the addresses of the packet destinations. On-chip destination

address coding methods affect the number of flits for each packet. It, in turn, directly affects

packet latency and energy consumption. Fig. 5.1 shows the number of start-up flits for a

9-data-flit packet with different number of destinations using different address encodings. The

2D mesh grid is 20×20. In a system which only supports unicast, the number of start-up flits is

directly proportional to the number of destinations. When a packet is sent to D destinations,

D copies of the packet are needed because each packet can only have one address. Each packet

www.manaraa.com

71

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19

N
u

m
 o

f
S

t
a

r
t
u

p
 F

li
t
s

Num of Destinations

Num of Start Flits with Different Encoding Methods

Unicast

Multicast(Binary)

Multicast(Unary)

Figure 5.1 Number of Startup Flits

is 1 +L flits long where L is the number of data flits. Therefore, the total number of start-up

flits for this packet is D × (1 + L). As each packet only has one address, the router can make

routing decision once the address flit has arrived.

To reduce the number of packet copies, multicast routing can be used. Multicast destination

addresses are commonly coded in two ways, one-hot unary code or binary code. A system

supporting binary multicast code allows a packet to have a certain number of destination

addresses M in each packet. Each address flit contains one address. In this system, when an

IP needs to send a packet to D destinations, the number of packet copies is reduced to ⌈D/M⌉

and each packet is M + L flits long. Although the route computation starts once the first

address flit has arrived at the router, the route computation unit needs to wait until the first

data flit has arrived to make the routing decision. Fig. 5.1’s red line shows the number of

start-up flits for a multicast packet using binary code for address encoding when M=4. Note

that the number of start-up flits is reduced significantly compared with the system without

multicast support.

In a system supporting unary multicast code, a packet can have multiple destination ad-

www.manaraa.com

72

(a) Unicast Packets

(2,1) ...

Addr Data Tail

(b) Multicast(unary code) Packet

(2,1) ...

Addr Data Tail

(c) Multicast(binary code) Packet

00000 01000 00000

Tail

(1,3)

Addr

(1,3) ...

Addr Data Tail

00100

Addr

00000

AddrAddr Addr Addr

...

Data

Figure 5.2 Packet Structure

Table 5.1 Packet Address Coding Scheme Comparison

Type # MPacket # Dest Packet Length Route Decision

Unicast Low Low D × (1 + L) Addr. Flit Arrival

Multicast(Binary) High Low ⌈D/M⌉(M + L) First Data Flit Arrival

Multicast(Unary) High High ⌈N/B⌉+ L Last Addr. Flit Arrival

dresses in one flit. If the number of IPs in the 2D mesh grid is N and each address flit uses

a B-bit field for destination addressing, the number of start-up flits is ⌈N/B⌉ + L. Fig. 5.1’s

green line shows the number of start-up flits for a multicast packet using unary code for address

encoding. The number of start-up flits is a constant. There are no extra packet copies at all.

The number of start-up flits is the lowest when the number of destinations is higher than five.

Each addressing method has its own benefits which are summarized in Table 5.1. Unicast

is simple and requires minimum hardware support. It is good for a system with low number

of multicast packets with a few packet destinations. Binary multicast code is suitable for a

system with high number of multicast packets with a few packet destinations. Unary multicast

code ensures that only a single packet copy is needed. It is good for a system with high number

of multicast packets with a lot of packet destinations. When a system has packets with mixed

characteristics, any coding method described above alone cannot provide an optimal solution.

To ensure packets can be routed efficiently, it is essential to have a router supporting all three

coding methods unicast, unary multicast and binary multicast.

www.manaraa.com

73

5.2 Multicast Code Transformation

The number of destination addresses of a packet decreases at packet divergence as the

packet travels through an on-chip network. It means that the advantages of unary multicast

code diminish hop by hop. When the number of addresses decreases to a level, binary multicast

code becomes a better coding method instead. For example, a router decides to diverge a 10-

address packet with 5 data flits into the North and the South in a 30× 30 2D mesh network.

Each packet can have 100 addresses using unary multicast coding. The packet to the North has

8 addresses and the packet to the South has 2 addresses. If the packet to the South keeps using

unary multicast code, the packet network load remains ⌈N/B⌉ + L which is 14. It requires

9 address flits. However, if the packet address coding is changed from unary multicast code

to binary multicast code, the network load decreases to 2 + L which is 7 and the number of

address flits decreases to 2.

The address coding method of the packet going to the South is changed to binary multicast

code and the packet continues to traverse to its destinations. Later, the packet is diverged to

the East and the South. Each diverged packet contains a single address. In this case, regardless

of whether the packet changes from binary multicast coding to unicast coding or not, network

load stays at 1 + L which is 6. Although there is no difference in network load in this coding

change, it still benefits the network by reducing the multicast virtual channel competition.

As multicast virtual channel has high hardware cost, the network which has low to moderate

level of multicast needs may consider having just one multicast virtual channel and several

unicast virtual channels in each router input port. When the input port has only one multicast

virtual channel, there is a competition among the multicast packets. Multicast packets have

to wait if the multicast virtual channel is in use. It leads to an increase in packet latency. By

transforming a binary multicast coded packet to unicast coded packet, the number of multicast

virtual channel competitors is reduced and the network performance is improved.

The unary multicast code to binary multicast code transformation unit (Fig. 5.3) contains

a T-map, a transformer and a 5-head FIFO. The FIFO depth is equal to the unary multicast to

binary multicast transformation threshold (TT) which is equal to ⌈N/B⌉. The T-map stores

www.manaraa.com

74

x

x x

T
ra
ns
fo
rm
er

X Y

x x

T
ra
ns
fo
rm
er

X Y

100 100

x

T
ra
ns
fo
rm
er

X Y

010 010

100 100

TMap

TMap

TMap

Transform?

Transform?

Transform?

T
ra
ns
fo
rm
er

X Y

011 001

010 010

100 100

TMap

Transform?

Figure 5.3 Unary Multicast Code to Binary Multicast Code Transforma-

tion

all destinations of the packet. Each valid entry in the T-map requests an address transforma-

tion. The transformer translates one address in the T-map into binary code per cycle. The

transformer puts the translated binary code into the FIFO. The translated destination address

in the T-Map will be removed.

If the number of destination addresses exceeds the transformation threshold (TT), the

FIFO will overflow and the transformation process will be terminated. In that case, the packet

continues using unary multicast code.

If the number of destination addresses is lower or equal to the transformation threshold

(TT), the entries in the FIFO will replace the address flits leaving the virtual channel. If the

FIFO is empty when the address flit leaves the virtual channel (It occurs when the number of

destination addresses is lower than TT), that address flit will be invalidated.

www.manaraa.com

75

The transformation starts once the first address flit has arrived at the virtual channel.

In the best case, transformation adds no extra routing cycle to the system. In the worst

case, the number of extra routing cycles is TT . The worst case occurs when the last unary

multicast address flit has more than TT addresses and other unary multicast address flits have

no addresses at all.

www.manaraa.com

76

CHAPTER 6. Multicast Experiments and Hardware Implementations

6.1 Experimental Setup

The multicast function was tested by both synthetic traffic [14] and video on-chip system

built from many FPGAs with a 2D Mesh network in Chapter 7.

6.1.1 Synthetic Traffic

The synthetic traffic patterns used are uniform traffic pattern, transpose traffic pattern and

transpose2 traffic pattern. In uniform traffic pattern, each IP randomly selects a destination

at the beginning of the simulation. In transpose traffic pattern, each IP (x,y) has a destination

at IP (Gsize − 1 − y,Gsize − 1 − x) where Gsize is the grid size of the 2D mesh network.

In transpose2 traffic pattern, each IP (x,y) has a destination at IP (y,x). 5% of the unicast

packets are converted to multicast packets. Every IP is randomly assigned to a multicast group

of 10. Each IP sends 5 multicast packets to all members within its multicast group and 95

unicast packets to its destination node in every 100 packet.

6.1.2 Simulation Parameters

Simulation parameters are shown in Table 6.1.

6.2 Multicast Routers Experiment

6.2.1 Synthetic Traffics

In this section, the proposed routers are tested with different multicast supports using

different synthetic traffic patterns. The focus is on the network maximum throughput, the

www.manaraa.com

77

Table 6.1 Baseline simulation parameters

Grid Size 20× 20

Synthetic Traffic Simulation Cycles 30, 000

Video System Simulation Cycles 20, 000, 000

Num. Unicast Virtual Channels on each port 1

Num. Multicast Virtual Channels on each port 2

Num. Samples 5

Flit Width 128− bit

Num Data Flits per Packet 10 flits

Path-Based Adaptive Routing observation window 5× 5

average packet latency and the network energy consumption. The five routers tested are:

1. Unicast Router (UNI).

2. Binary Multicast Router without code transformation (BIN(NT)).

3. Binary Multicast Router with code transformation (BIN(T)).

4. Unary Multicast Router without code transformation (UNA(NT)).

5. Unary and Binary Multicast Router with code transformation (BOTH(T)).

Unicast router (UNI) has three unicast virtual channels on each input port. Multicast

routers have two unicast virtual channels and one multicast virtual channel on each input

port. A multicast virtual channel can handle both unicast and multicast packets. Binary

Multicast Router with code transformation (BIN(T)) can transform binary multicast packet to

unicast packet. Unary and Binary Multicast Router with code transformation (BOTH(T)) can

transform unary multicast packet to binary multicast packet and transform binary multicast

packet to unicast packet.

6.2.2 Comparison between Unicast Router and Multicast Routers

In this section, the five unicast and multicast routers mentioned above are tested using

Virtual Cut-through routing. The length of each virtual channel is 14.

www.manaraa.com

78

6.2.2.1 Throughput

The throughput comparison of the five routers is shown in Table 6.2, Fig. 6.1, Fig. 6.2 and

Fig. 6.3.

Table 6.2 Multicast Router Maximum Throughput

Traffic Uniform Transpose Transpose2

Routing XY Path XY Path XY Path

NIL 1176782 1409556 833244 1267076 831616 1266188

BIN(NT) 1115466 1051240 841404 960674 840416 978882

BIN(T) 1179860 1437002 840844 1200954 839960 1126668

UNA(NT) 1079354 1009786 841116 936434 851066 952108

BOTH(T) 1182006 1438484 848132 1206106 853240 1158750

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

#
 F

li
t
s
 A

r
r
iv

e
d

Router

Max Throughput (Uniform)

XY

Path

Figure 6.1 Multicast Router Maximum Throughput (Uniform Traffic)

The figures show that the unicast router has higher maximum throughput than the mul-

ticast routers. It is because a multicast router has only one multicast virtual channel in each

input port. When the network is highly congested, many multicast packets block the output

of the IPs. If the code transformation function is used, this blocking problem can be lessened.

www.manaraa.com

79

0

200000

400000

600000

800000

1000000

1200000

1400000

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

#
 F

li
t
s
 A

r
r
iv

e
d

Router

Max Throughput (Transpose)

XY

Path

Figure 6.2 Multicast Router Maximum Throughput (Transpose Traffic)

0

200000

400000

600000

800000

1000000

1200000

1400000

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

#
 F

li
t
s
 A

r
r
iv

e
d

Router

Max Throughput (Transpose2)

XY

Path

Figure 6.3 Multicast Router Maximum Throughput (Transpose2 Traffic)

www.manaraa.com

80

Routers with code transformation has higher maximum throughput than those without.

Adaptive routers have higher maximum throughputs than XY routers in most of the simu-

lations. The adaptive multicast routers with code transforming and the adaptive unicast router

have higher maximum throughputs than their counterparts using XY-Routing in all synthetic

traffics. The adaptive multicast routers without code transforming have higher maximum

throughputs than their counterparts using XY-Routing in transpose and transpose2 traffic

patterns. However, the adaptive multicast routers without code transforming have lower max-

imum throughputs than its counterpart using XY multicast router in uniform traffic pattern.

It is because the maximum throughput is affected by the packet traffic pattern created by the

IPs. When the network is highly congested, uniform traffic pattern prefers a more regular

packet flow which can be created by the multicast routers without code transformation using

XY-Routing. Less on-chip packets would be blocked in this packet flow.

6.2.2.2 Packet Latency

The packet latency comparison of the five routers is shown in Table 6.3, Fig. 6.4, Fig. 6.5

and Fig. 6.6. The data is recorded when the number of arrival flits is 100,000.

Table 6.3 Multicast Router Packet Latency

Traffic Uniform Transpose Transpose2

Routing XY Path XY Path XY Path

NIL 111.75 111.73 114.35 114.35 114.80 114.80

BIN(NT) 103.65 104.16 107.00 107.61 107.27 107.85

BIN(T) 103.38 104.04 106.78 107.51 107.06 107.76

UNA(NT) 103.94 104.01 107.13 107.20 107.57 107.59

BOTH(T) 100.07 100.87 103.54 104.38 103.93 104.69

The figures show that all multicast routers have lower packet latencies than the unicast

router. The adaptive multicast router supporting both binary and unary codes with the code

transformation function have the lowest packet latency. Adaptive multicast routers have higher

packet latencies than XY-routing multicast routers because of the extra cycles for address

www.manaraa.com

81

decoding.

90

95

100

105

110

115

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

C
y

c
le

s

Router

Packet Latency (Uniform)

XY

Path

Figure 6.4 Multicast Router Packet Latency (Uniform Traffic)

6.2.2.3 Energy Consumption

The energy consumption comparison of the five routers are shown in Table 6.4, Fig. 6.7,

Fig. 6.8 and Fig. 6.9. The data is recorded when the number of arrival flits is 200,000.

Table 6.4 Multicast Router Flits Energy Consumption (pJ)

Traffic Uniform Transpose Transpose2

Routing XY Path XY Path XY Path

NIL 405.743 410.227 422.234 426.898 422.129 426.812

BIN(NT) 396.926 392.705 413.289 409.323 413.311 409.335

BIN(T) 386.770 383.675 403.184 400.286 403.188 400.270

UNA(NT) 392.761 384.230 408.736 400.707 408.743 400.879

BOTH(T) 369.946 366.982 386.174 383.567 386.150 383.667

In the unicast router, adaptive routing consumes more energy per flit than XY-routing

because of the extra logic component. The unicast router consumes more energy per flit than

the multicast routers because of the extra packet copies. Code transformation reduces energy

consumption by reducing the number of address flits. Adaptive multicast router consumes less

www.manaraa.com

82

98

100

102

104

106

108

110

112

114

116

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

C
y

cl
e

s

Router

Packet Latency (Transpose)

XY

Path

Figure 6.5 Multicast Router Packet Latency (Transpose Traffic)

98

100

102

104

106

108

110

112

114

116

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

C
y

c
le

s

Router

Packet Latency (Transpose2)

XY

Path

Figure 6.6 Multicast Router Packet Latency (Transpose2 Traffic)

www.manaraa.com

83

340

350

360

370

380

390

400

410

420

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

p
J/

F
li

t

Router

Energy Consumption (Uniform)

XY

Path

Figure 6.7 Multicast Router Flits Energy Consumption (Uniform Traffic)

360

370

380

390

400

410

420

430

440

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

p
J/

F
li

t

Router

Energy Consumption (Transpose)

XY

Path

Figure 6.8 Multicast Router Flits Energy Consumption (Transpose Traffic)

www.manaraa.com

84

360

370

380

390

400

410

420

430

440

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

p
J/

F
li

t

Router

Energy Consumption (Transpose2)

XY

Path

Figure 6.9 Multicast Router Flits Energy Consumption (Transpose2 Traf-

fic)

energy than XY-routing multicast router because the dynamic packet divergent point selection

reduces flit copies. The adaptive multicast router supporting both binary and unary codes

with the code transformation function has the lowest energy consumption.

6.2.3 Video System on FPGAs with 2D Mesh Network

In this section, the video on-chip system performances using the five routers are compared.

The video system used in this experiment is discussed in Chapter 7. The main uses of multicast

function in the video system are:

1. sending a configuration bitstream from one FPGA tile or I/O to many other FPGA tiles

for high speed parallel FPGA reconfigurations and

2. routing data from one producer module to many consumer modules.

A co-processing request queue for the video system is randomly generated. The configura-

tion bitstream size of each CLB group is 2.2 Mbits which equals 18,000 128-bit packets. The

runtime (RT) and configuration time (CT) are measured in cycles and the energy is measured

in nJ . Configuration time is the elapsed time interval between the system issuing reconfigura-

www.manaraa.com

85

tion signals until all tile reconfiguration is complete. Runtime is the time interval from when

all tile reconfiguration is complete to when all data is processed. Note that runtime excludes

configuration time.

The average co-processor runtime, the average FPGA configuration time and the average

FPGA configuration energy are shown in Table 6.5, Fig. 6.10, Fig. 6.11 and Fig. 6.12.

Table 6.5 Multicast Routers Comparison (Video on-chip system using

FPGA)

Router Avg. Run Avg Conf. Avg. Conf.

Cycles Cycles Energy (pJ)

xy NIL 522810 78624 3180393

xy BIN(NT) 511710 64604 2858594

xy BIN(T) 501242 49574 2714574

xy UNA(NT) 544389 74168 3073291

xy BOTH(T) 502952 47715 2404750

p adap NIL 496585 71792 3110929

p adap BIN(NT) 498072 64417 2838091

p adap BIN(T) 494126 48724 2618276

p adap UNA(NT) 515521 71161 3005689

p adap BOTH(T) 486276 43991 2388566

6.2.3.1 Co-process Runtime

The adaptive routers can reduce average co-processor runtime. The multicast routers

(except the unary multicast without transformation function) perform better than the unicast

router in terms of the co-processor runtime. Unary multicast router without transformation

function has the highest co-processor runtime because the unary multicast packets have long

address flits and they block the multicast virtual channel and network interface output. Co-

processors in the adaptive multicast router supporting both binary and unary codes with code

transformation function have the lowest runtime.

www.manaraa.com

86

440000

460000

480000

500000

520000

540000

560000

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

C
y

c
le

s

Router

Average Process Runtime (Video on-chip System)

XY

Path

Figure 6.10 Average Video System Co-processor Runtime Comparison

0

20000

40000

60000

80000

100000

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

C
y

c
le

s

Router

Average FPGA Configuration Time (Video on-chip System)

XY

Path

Figure 6.11 Video System FPGA Configuration Time Comparison

www.manaraa.com

87

6.2.3.2 FPGA Reconfiguration Time

The adaptive routers reduce the average FPGA configuration time. The multicast routers

perform better than the unicast router in terms of reconfiguration time. FPGA IP in the

adaptive multicast router supporting both binary and unary codes with code transformation

function has the lowest reconfiguration time.

6.2.3.3 FPGA Reconfiguration Router Energy

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

p
J

Router

Average FPGA Configuration Router Energy

(Video on-chip System)

XY

Path

Figure 6.12 Video System FPGA Configuration Router Energy Consump-

tion

The adaptive routers reduce the average FPGA configuration router energy consumption.

The multicast routers perform better than the unicast router in terms of router energy con-

sumption. FPGA IP reconfiguration in the adaptive multicast router supporting both binary

and unary codes with code transformation function has the lowest router energy consumption.

6.3 Address-Data Decoupling Experiment

Address-Data FIFO Decoupling allows multicast routers using Wormhole Routing without

having multicast deadlock. The routers can support packets which are longer than the virtual

www.manaraa.com

88

channel. In this section, the router performances between routers using Virtual Cut-through

Routing and Wormhole Routing are compared.

6.3.1 Synthetic Traffics

In the synthetic traffics experiment, a dual-coded adaptive multicast router with transfor-

mation function and an XY-routing multicast router are tested. Each router is tested using

Virtual Cut-through Routing and Wormhole Routing. The routers using Wormhole Routing

have the address-data FIFO decoupled virtual channels. Every packet in the routers using

Virtual Cut-through Routing has a length of 10. Every packet in the routers using Wormhole

Routing has a length of 20.

6.3.1.1 Maximum Throughput

Table 6.6 Virtual Cut-Through and Wormhole Routing Comparison (Max-

imum Throughput (Data Flits))

Router Random Transpose Transpose2

XY(VCT) 905058 679126 679560

XY(Wormhole) 927716 695256 718888

Path(VCT) 963166 855494 786414

Path(Wormhole) 974072 961516 915640

The maximum throughputs of the four tested routers are shown in Table 6.6 and Fig.

6.13. Wormhole Routing can store more data into a single packet than Virtual Cut-through

Routing. It increases the maximum throughput in both routers using XY-Routing and Path-

Based Adaptive Routing.

6.3.1.2 Average Packet Latency Per Flit

Table 6.7 and Fig. 6.14 show the average packet latency per data flit. The data is recorded

when the number of arrival data flits is around 551176. Wormhole router reduces the average

packet latency of both routers using XY-Routing and Path-Based Adaptive Routing.

www.manaraa.com

89

0

200000

400000

600000

800000

1000000

1200000

Random Transpose Transpose2

N
u

m
.

o
f

F
li

t
s

Maximum Throughput

XY(VCT)

XY(Wormhole)

Path(VCT)

Path(Wormhole)

Figure 6.13 Virtual Cut-Through and Wormhole Routing Comparison

(Maximum Throughput (Data Flits))

Table 6.7 Virtual Cut-Through and Wormhole Routing Comparison (Av-

erage Packet Latency Per Data Flit (Cycles))

Router Random Transpose Transpose2

XY(VCT) 11.47 12.78 12.75

XY(Wormhole) 6.9 7.74 7.73

Path(VCT) 11.77 12.33 12.36

Path(Wormhole) 6.97 7.3 7.35

www.manaraa.com

90

0

5

10

15

Random Transpose Transpose2

C
y

c
le

Average Packet Latency Per Flit

XY(VCT)

XY(Wormhole)

Path(VCT)

Path(Wormhole)

Figure 6.14 Virtual Cut-Through and Wormhole Routing Comparison

(Average Packet Latency Per Data Flit (Cycles))

6.3.1.3 Average Router Energy Per Flit

Table 6.8 Virtual Cut-Through and Wormhole Routing Comparison (En-

ergy Consumption per Data Flit (pJ))

Router Random Transpose Transpose2

XY(VCT) 354.62 373.35 373.25

XY(Wormhole) 338.46 356.49 356.47

Path(VCT) 353.05 368.34 368.04

Path(Wormhole) 335.16 350.25 350.17

Table 6.8 and Fig. 6.15 compare the energy consumption per data flit. The data is recorded

when the number of arrival data flits is around 551176 during the simulation. Wormhole

Routing reduces the energy consumption per data flit of both routers using XY-Routing and

Path-Based Adaptive Routing by reducing the number of packet headers.

6.3.2 Video System on FPGAs with 2D Mesh Network

In this section, the video on-chip system performances of the five adaptive routers in section

6.2.1 are compared. The video system used in this experiment is discussed in Chapter 7.

www.manaraa.com

91

300

320

340

360

380

Random Transpose Transpose2

p
J

Router Energy Per Flit

XY(VCT)

XY(Wormhole)

Path(VCT)

Path(Wormhole)

Figure 6.15 Virtual Cut-Through and Wormhole Routing Comparison

(Average Packet Latency Per Data Flit (Cycles))

All multicast routers using Wormhole Routing have address-data FIFO decoupling virtual

channels. Every packet in the routers using Virtual Cut-through Routing has a maximum

packet length of 10. Every packet in the routers using Wormhole Routing has a maximum

packet length of 20. A datum longer than the maximum packet length will be sent by multiple

packets.

A co-processing request queue for the video system is randomly generated. The configura-

tion bitstream size of each CLB group is 2.2 Mbits which equals 18,000 128-bit packets. The

runtime (RT) and configuration time (CT) are measured in cycles and the energy is measured

in nJ . Configuration time is the elapsed time interval between the system issuing reconfigura-

tion signals until all tile reconfiguration is complete. Runtime is the time interval from when

all tile reconfiguration is complete to when all data is processed. Note that runtime excludes

configuration time.

The average co-processor runtime and the average FPGA configuration time are shown in

Table 6.9, Fig. 6.16 and Fig. 6.17.

www.manaraa.com

92

Table 6.9 Virtual Cut-Through Router and Wormhole Router Comparison

(Video on-chip system using FPGA)

Router Avg. Run Avg. Run Avg Conf. Avg Conf.

Cycles Cycles Cycles Cycles

VCT Wormhole VCT Wormhole

NIL 496585 469192 71792 57728

BIN(NT) 498072 462294 64417 41324

BIN(T) 494126 461907 48724 34502

UNA(NT) 515521 475190 71161 49608

BOTH(T) 486276 463397 43991 33712

430000

440000

450000

460000

470000

480000

490000

500000

510000

520000

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

C
y

c
le

s

Router

Average Process Runtime (Video on-chip System)

Path(VCT)

Path(Wormhole)

Figure 6.16 Average Video System Process Runtime Comparison

www.manaraa.com

93

6.3.2.1 Co-processor Runtime

The routers using Wormhole Routing have lower average co-processor runtime than the

routers using Virtual Cut-through Routing. As the number of data flits in a packet increases,

the overhead of each data flit decreases. This reduces the network load. Then, packet latency

also decreases because of the less congested network. As a result, the co-processor runtime is

reduced.

6.3.2.2 FPGA Reconfiguration Time

0

10000

20000

30000

40000

50000

60000

70000

80000

NIL BIN(NT) BIN(T) UNA(NT) BOTH(T)

C
y

cl
e

s

Router

Average FPGA Configuration Time (Video on-chip System)

Path(VCT)

Path(Wormhole)

Figure 6.17 Video System FPGA Configuration Time Comparison

The routers using Wormhole Routing have lower average FPGA tile reconfiguration time

than the routers using Virtual Cut-through Routing. As the number of data flits in a packet

increases, the overhead of each data flit decreases. This reduces the network load. Then,

packet latency also decreases because of the less congested network. As a result, the FPGA

configuration time is reduced.

6.3.3 Hardware Implementations

Six routers are implemented to compare their chip spaces and clock cycles. The six routers

are:

www.manaraa.com

94

1. XY unicast router (XY-NIL)

2. Binary-coded XY router with code transformation function (XY-BIN(T))

3. Dual-coded XY Router with code transformation function (XY-BOTH(T))

4. Path-based adaptive unicast Router (Path-NIL)

5. Binary-coded Path-based adaptive router with code transformation function (Path-BIN(T))

6. Dual-coded Path-based adaptive router with code transformation function (Path-BOTH(T))

The routers are written in VHDL and are synthesized by Cadence RTL Compiler using TSMC

65nm standard cell library. The unicast router has three unicast virtual channels on each

input port. The multicast router has two unicast channels and one multicast channel on each

input port. The data bus width is 128-bit. The Wormhole router’s virtual channel length

is 9. The memory component is implemented using flip-flop standard cells. The size of the

adaptive router’s observation window is 5 × 5. Table 6.10 shows the details of the hardware

implementation.

The chip space of the multicast routers are 100 Mλ2 higher than the unicast routers

because of the extra 5-head FIFOs and the multicast maps. The chip space of the multicast

routers with code transformation is 25 to 30 Mλ2 higher than the multicast routers without

code transformation. The Route Computation stage of Path-based Adaptive Router is longer

than XY-router because of the more complex route computation. By limiting the observation

window size to 5× 5, the Route Computation path would not become the critical path. Then,

the clock in Path-based Adaptive Unicast Router can run as fast the clock in XY Unicast Router.

Address-Data FIFO Decoupling lengthens Switch Allocation stage because of the Body-to-Tail

flit modification. The router clock increases from 1151ps to 1264ps.

www.manaraa.com

95

Table 6.10 Area and Cycle Time Data

Router Multicast Support Area RC VA SA ST

(Mλ2) (ps) (ps) (ps) (ps)

XY NIL 208.42 375 503 1151 257

XY BIN(T) 308.36 575 503 1264 257

XY BOTH(T) 333.45 597 503 1264 257

Path NIL 216.10 843 503 1151 258

Path BIN(T) 328.35 1016 503 1264 258

Path BOTH(T) 358.11 1027 503 1264 258

www.manaraa.com

96

CHAPTER 7. An On-chip System Built from Many FPGAs with a 2D

Mesh Network

This chapter discusses the operation of an on-chip system built from many FPGA tiles and

a 2D-Mesh on-chip network. The protocol in the on-chip system is explained and a sample

application which could be used in the system is given.

7.1 Motivation

There are many ways to use an FPGA. A notable use is as a co-processor to speed up

(accelerate) the intensive portion of a program. Lysecky et al. [31] propose Warp Processors

to accelerate a program by converting software binary instructions into FPGA circuit config-

uration bitstream. A CPU stores the data going to be processed in a memory space which is

the input buffer of the co-processor. Then, CPU notifies the configured FPGA to process the

data. After the data has been processed, the FPGA stores the processed data in a memory

space which is the output buffer of the co-processor. In this system, data travels from the CPU

to the FPGA and back to the CPU.

Depending on the co-processor logic size and internal structure, a co-processor can be

implemented using multiple FPGA tiles. For a co-processor with many stages, each stage can

be built from a single FPGA tile. SCORE [7] is a co-processor system that supports multiple

FPGAs co-processing. In SCORE, the data travels through multiple FPGA tiles before going

back to the CPU. SCORE contains four FPGA tiles connected by a bus.

As the fabrication technology improves, more FPGAs can be put onto a single chip. With

the increased number of on-chip system modules, the bandwidth of a bus can no longer meet

the increased communication demands from the FPGAs. Therefore, a many-FPGA on-chip

www.manaraa.com

97

system needs a native 2D mesh network to prevent the communication infrastructure from

becoming the system bottleneck [28].

7.2 Architecture of an on-chip FPGA system with a 2D Mesh Network

I/
O

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

lib
1

lib
2

F
re
e

C
P
U

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

lib
6

F
re
e

lib
3

lib
4

lib
5

Figure 7.1 Many-FPGA on-chip system Layout

A many-FPGA on-chip system (Fig. 7.1) contains many CLB Groups and a CPU on

the bottom left corner. They are connected by a 2D mesh network. Each CLB Group can

be considered as an FPGA tile and be reconfigured independently as a module to support a

co-processor. A CLB Group (Fig. 7.2) contains:

1. A set of input buffers to store the data from other CLB Groups or I/O.

2. A set of output buffers to store the processed data going to other CLB Groups or I/O.

3. An address table to store the physical addresses of the ancestor modules and descendant

modules of the CLB Group.

4. A set of Block RAMs.

5. A set of Configuration Logic Blocks for data processing.

The CPU is responsible for modules placements and CLB Group reconfigurations. A co-

processor (accelerator) (Fig. 7.3) is composed of several modules. Each CLB Group can be

www.manaraa.com

98

N
e
tw
o
rk

In
te
rf
a
c
e

Buffer In

var1 var2 var3 var4 var5 var6

Buffer Out

var1 var2 var3 var4 var5 var6

Address Table

invar1

Address

invar2

invar3

invar4

invar5

invar6

outvar1

Address

outvar2

outvar3

outvar4

outvar5

outvar6

CLBsBlock RAM

Figure 7.2 CLB Group

configured as a single module to support the co-processor. The data comes from the I/O,

processed by several modules and then goes back to the I/O. The I/O tiles are located on the

left side of the chip. Each I/O tile handles the input and output of all CLB Groups in its row.

When the system is implemented using the 16nm technology, a 112mm2 chip contains 400

FPGA tiles. These FPGA tiles are connected by a 20× 20 2D Mesh network. Each FPGA tile

and its router occupy 66.14Kλ × 66.14Kλ of chip space. The configuration bitstream size of

each FPGA tile is about 2.44Mbits.

www.manaraa.com

99

lib1

lib2

lib3

lib4

lib5

lib6

Accelerator A Accelerator B

datain datain

dataout dataout

void acceleratorA(){

for (i=0;i<1000;i++){

lib1(datainto1[i],data1to2[i]);

lib2(data1to2[i],data2to3[i]);

lib3(data2to3[i],data3toout[i]);

}

void acceleratorB(){

for (i=0;i<1000;i++){

lib4(datainto4[i],data4to2[i]);

lib2(data4to2[i],data2to5[i]);

lib5(data2to5[i],data5toout[i]);

}

(b)(a)

Figure 7.3 Co-processors (a) Code, (b) Dataflow Graph

7.3 Protocols

The on-chip FPGA system supports ten types of packets listed in Table 7.1.

www.manaraa.com

100

Table 7.1 Packet Type

Packet Type Src. Dest. Description
1 Data I/O CLB G. The data to be processed

CLB G. CLB G. or processed data going back to I/O
CLB G. I/O

2 Data Ack CLB G. CLB G. Ack the sender that the data is received
3 Reconfigure CPU CLB G. Set up the CLB Group’s address table
4 Configuration CPU I/O Ask the I/O or CLB Group to send

Bigstream Request CPU CLB G. bitstream to the reconfiguring CLB Groups.
5 Configuration I/O CLB G. Configuration Bitstream from I/O or

Bitstream CLB G. CLB G. CLB Group to the CLB Group
to be reconfigured

6 Configuration Complete CLB G. I/O Notify the CPU that
the reconfiguration is complete

7 Start CPU CLB G. Ask the CLB Group to start
requesting data from the I/O

8 Data Request CLB G. I/O Ask the I/O to provide Data
9 Buffer Request CLB G. CLB G. The ancestor CLB Group requests the buffer

in the descendant CLB Group
10 Buffer Ack CLB G. CLB G. Answer the ancestor CLB Groups

with the number of available buffers

7.4 Co-Processor Computing Model

In this section, a co-processing scenario for an on-chip FPGA system is illustrated. Fig.

7.4(a) shows the co-processor structure and Fig. 7.4(b) shows the current chip layout. When

a program needs co-processing, it puts a request into a system co-processing queue. The CPU

checks the queue and services the requests in a first come first serve basis. When there are

enough free CLB Groups to support a request, the CPU starts co-processing. It picks a CLB

Group for each co-processor module. (The placement algorithms’ details are given in Chapter

8.) Then, the system reconfigures the CLB Groups to form a co-processor.

In this scenario, the CPU has decided to map co-processor modules M1, M2, M3 and

M4 to Tile (2,2), Tile (2,3), Tile (3,2) and Tile (3,3) respectively. It sends a Reconfigure

packet to each tile to modify their address tables. From the table, Tile (2,2) knows that it will

be configured to module M1. M1 is the level 0 node in the data flow graph and it has two

descendants. Its descendant M2 is located at Tile (2,3) and its descendant M3 is located at

www.manaraa.com

101

M2 M3

M4

datain

M1

dataout

I/
O

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

L1 L2 Fr
ee

C
P
U

Fr
ee

Fr
ee

Fr
ee

Fr
ee

Fr
ee

Fr
ee

Fr
eeL6

Fr
eeL4L3

L5

(3,3)

(3,2)

(a) (b)

Figure 7.4 (a) Co-processor Structure (b) Current Chip Layout

Tile (3,2).

Because configured modules M1, M2, M3 and M4 do not exist on the chip at this time,

the configuration bitstreams have to be fetched from the I/O. The CPU sends four BS Request

packets to the I/O tiles. These BS Request packets ask the I/O tiles to send M1 configuration

bitstream to Tile (2,2), M2 configuration bitstream to Tile (2,3), M3 configuration bitstream

to Tile (3,2) and M4 configuration bitstream to Tile (3,3). Once Tile (2,2), Tile (2,3), Tile

(3,2) and Tile (3,3) have received the configuration bitstream, they start the CLB Group

reconfiguration. When the reconfiguration is complete, the CLB Group sends a Configuration

Complete packet back to the CPU. Once the CPU has received all the Configuration Complete

packets from the reconfiguring CLB Groups, the CPU sends a Start packet to the head (root)

of the co-processor (M1 at Tile (2,3)). Then, module M1 sends a Data Request packet with

a memory address to the I/O to ask for the input data. The amount of the requested data

depends on the number of available input buffers in module M1. The I/O then sends some

Data packets back to module M1. Module M1 starts processing the data received from the I/O

once the data packet has arrived. It also sends a Data Ack packet to the I/O to acknowledge

the I/O that it has received the data. It keeps processing the input data from the input buffers

and producing the output data to the output buffers. After several rounds of data processing,

the number of input data in the input buffers will drop below a threshold level. When this

www.manaraa.com

102

happens, module M1 sends another Data Request packet to the I/O to ask for more data.

When the number of output data in module M1 ’s output buffers is higher than a threshold

level, module M1 sends a Buffer Request packet to its descendant modules M2 and M3 asking

for the number of available input buffers. Modules M2 and M3 respond with two Buffer Ack

packets to inform module M1 about the number of available input buffers. Module M1 sends

an appropriate amount of processed data to the descendantsM2 andM3 for further processing.

Modules M2 and M3 send two Data Ack packets back to M1 once they have received the data

before they start data processing. The leaf node of the co-processor data flow graph sends

the processed data back to the I/O. The CPU keeps track of the number of processed data.

When all input data have been processed, the CPU removes the co-processor from the system

by setting all CLB Groups allocated to this co-processor FREE. Then, it checks if there are

sufficient free CLB Groups for the next co-processor request.

7.5 On-chip Video FPGA System

In this section, a video server hosted on an on-chip FPGA system is discussed. This video

server is proposed by Herveille et al. which is publicly available on opencore.org [22]. The

system contains 23 modules. The details of each module are shown in Table 7.2. Six types of

MPEG co-processor could be built using these 23 modules. The six MPEG co-processors are:

1. MPEG4 CABAC encoder (Fig. 7.5)

2. MPEG4 CABLC encoder (Fig. 7.5)

3. MPEG4 CABAC decoder (Fig. 7.6)

4. MPEG4 CABLC decoder (Fig. 7.6)

5. MPEG2 encoder (Fig. 7.7)

6. MPEG2 decoder (Fig. 7.8)

www.manaraa.com

103

Table 7.2 Video Server Modules

Module Name Cycles Inputs Width (bits) Outputs Width (bits)

1 I-prediction 256 256/256 288/256

2 P-prediction 256 256/256 288/128/256

3 Core Transform 80 288/288 128

4 DCT 64 128 128

5 Quantise 64 128 128/128/128

6 IDCT 64 128/128 128

7 Dequantise 48 128 128

8 Inverse Transform 128 128 256

9 Reconstruction 128 256/256/256 256/256

10 CABAC 80 128 240

11 CAVLC 32 128 120

12 ToByteB 16 240 64

13 ToByteV 80 120 32

14 Arithmetic (ARI) 8 128/128 128

15 Motion Estimator 256 128 128

16 Motion Compensator 256 128/128 128

17 VLC 16 128 64

18 FBYTEV 32 64 240

19 CAVLD 40 240 128/128

20 FBYTEB 16 32 120

21 CABAD 80 120 128/128

22 VLD 16 64 128

23 MC 68 128/128 128

www.manaraa.com

104

Reconstruction

Inverse Transform

CABAC/CAVLC ToByteB/ToByteV

DequantiseIDCT

P-prediction

Core Transform

DCTQuantise

I-prediction

256-bit 256-bit

288-bit

288-bit

128-bit

1
2
8
-b
it

128-bit

128-bit 128-bit

128-bit 128-bit

256-bit

I/O

I/O

256-bit
256-bit

240/120-bit

64/32-bit

128-bit

Figure 7.5 MPEG4 Encoder (M4EB/M4EV)

FByteB/FByteV

I/O

32/64-bit

CABAD/CAVLD
240/120-bit

Inverse Transform

DequantiseIDCT
128-bit 128-bit

128-bit 128-bit
256-bitI/O

Reconstruction

256-bit

Figure 7.6 MPEG4 Decoder (M4DB/M4DV)

Motion Compensator

VLC

DequantiseIDCT

SUB

DCTQuantise

128-bit

128-bit

128-bit

128-bit

I/O

I/O

128-bit

64-bit

ADD

128-bit

128-bit

128-bit

Motion Estimator

128-bit

128-bit

128-bit

Figure 7.7 MPEG2 Encoder (M2E)

www.manaraa.com

105

VLD
64-bit

128-bit

I/O

DequantiseIDCT

128-bit
ADD Motion Compensator

128-bit

128-bit

I/O

128-bit

128-bit

Figure 7.8 MPEG2 Decoder (M2D)

www.manaraa.com

106

CHAPTER 8. A Basic Co-processor Placer

8.1 Motivation

I/
O

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

F
re
e

M
1

F
re
e

C
P
U

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

M
2

F
re
e

F
re
e

(1,0)

I/
O

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

R
N
I

F
re
e

M
1

F
re
e

C
P
U

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

F
re
e

M
2

F
re
e

F
re
e

F
re
e

(1,0)

(a) (b)

Figure 8.1 Placement Comparison

In a native 2D mesh network supporting FPGA on-chip system, co-processor modules’

locations affect system performance. When the system modules are closely placed, network

energy consumption can be reduced and system throughput can be increased. Fig. 8.1 com-

pares two co-processor placements. A co-processor in this system requires two modules, M1

and M2. The data travels from the I/O to M1, from M1 to M2 and back to the I/O. In Fig.

8.1(a), M1 is placed on location (1,1) and M2 is placed on location (1,2). The number of hops

of each data stream is 3. In Fig. 8.1(a), M1 is placed on location (1,1) and M2 is placed on

location (2,2). The number of hops of each data stream is 5.

Placing modules closer can reduce communication energy because each extra packet hop

traversed by a packet increases energy consumption. The co-processor performance increases

because its data packets experience less congestion when the number of hops is lower. In

www.manaraa.com

107

addition, system performance increases because the decreased demands of the co-processor’s

packets lessen the link competition with other packets.

8.2 Algorithm

This section details the basic placement algorithm. The placer uses this algorithm to place

a co-processor on free CLB Groups. The co-processor is considered to be a data flow graph.

Each node in the data flow graph is a module supporting the co-processor. Each module

belongs to a IP type. A co-processor can start once all its modules are placed on the CLB

groups which are configured to the corresponding IP types. Each co-processor has a module

placement order list. The CPU places the co-processor’s modules following this list. The

list is created by sorting the edges in the data flow graph according to their communication

volume. Two modules connected by edge e with the highest communication volume Comm(e)

are placed first. In these two modules, the module m with higher communication volume

Comm(m) is placed first. The communication volume of a module m is

Comm(m) =
∑#parent(m)

i=1 Comm(m, parent(m, i))+
∑#children(m)

j=1 Comm(m, children(m, j)).

The basic co-processor placement algorithm contains four main steps.

1. Look for some revivable tiles to reuse them.

2. Look for some free tiles to place the co-processor’s modules.

3. Place the modules on the selected free tile.

4. Decide the configuration bitstream sources.

The algorithm notation is shown in Table 8.1. The algorithm starts with a search for

revivable tiles. Revivable tile is a CLB group which is idle (Free) but has been configured

to an IP type needed by the co-processor being placed. Using revivable tiles reduces tile

reconfiguration time and reconfiguration energy. The center of gravity method is used to reduce

the Manhattan Distances between the mapping modules to minimize network communication

energy. CGbase is computed based on the required IP types and the number of available

revivable tiles (Line 3, Algorithm 1).

www.manaraa.com

108

1: //Compute Mapping Center of Gravity
2: if

∑
i∈IPg

|T ileRg,i| > 0 then

3: CGbase =

∑
i∈IPg

∑
j∈TileRg,i

loc(j)×|IPg,i|
∑

i∈IPg
|TileRg,i |×|IPg,i|

;

4: else

5: CGbase=

∑
s∈Listfree

loc(s)

|Listfree |
;

6: end if

7: //Revivable Tiles Selection
8: num freetile needed = 0;
9: for all i ∈ IP g do

10: if |IPg,i| ≥ |T ile Rg,i| then
11: Move all T ile Rg,i from Listfree to Listrevive;
12: num freetile needed+=(|IP g, i| − |T ile Rg,i|);
13: Rtoken(i)=(|IP g, i| − |T ile Rg,i|);
14: else

15: Sort T ile Rg,i according to their MDs from the CGbase in ascending order;
16: Move the first |IP Rg,i| T ile Rg,i from Listfree to Listrevive;
17: end if

18: end for

19: if num freetile needed > num freetile then

20: return ”Not enough free tile to run the co-processor”;
21: end if

22: //Reconfiguration Tiles Selection

23: CGrevive=
∑

s∈Listrevive
loc(s)

|Listrevive |
;

24: Sort Listfree according to their MD from the CGrevive;
25: Move the first num freetile needed tiles from Listfree to Listnew ;
26: //Place Graph’s Module
27: for all Module t ∈ Listg do

28: if RToken(IP type(t))! = 0 then

29: Listcandidatet=Listnew+ListreviveIPtype(t)
;

30: else

31: Listcandidatet=ListreviveIPtype(t)
;

32: end if

33: if Some t’s neighbor modules are mapped then

34: CGneigh=
∑

m∈mapped neigh(t) loc(m)

|mapped neigh(t)|
;

35: else

36: CGneigh=
∑

m∈neigh(t) CGIP type(m)

|neigh(t)|
where CGIPtype(m)=

∑
p∈Listcandidatem

loc(p)

|Listcandidatem
|

;

37: end if

38: Map t on the tile k ∈ Listchoices with the smallest MD from CGneigh;
39: if k ∈ Listnew then

40: Add k to ListreconfigureIPtype(t)
;

41: Rtoken(IP type(t))−−;
42: end if ;
43: Remove k from either Listnew or ListreviveIPtype(t)

;
44: end for

45: //Bitstream Source Selection
46: for all i ∈ IP g do

47: if Listreconfigurei !=NULL then

48: Compute CGListreconfigurei

49: if ∃ on-chip bitstream then

50: Srcbitstream=T ile Rg,i with the smallest MD from CGListreconfigurei
;

51: else

52: Srcbitstream=I/O close to CGListreconfigurei
y;

53: end if

54: end if

55: end for

Algorithm 1 Basic Runtime Placement Algorithm

www.manaraa.com

109

Table 8.1 Notation

n Number of tiles
tg Number of modules in the graph g
IPg Set of IPtype required by the graph g

|IPg,i| Number of IPtype i required by the graph g
T ileRg,i Revivable tile configured as IPtype i which

is required by the graph g
CG Ri Center of gravity of all T ileRg,i

CGproposed Proposed center of gravity for the placement
CGrevive Center of gravity of all selected revivable tiles
CGfree Center of gravity of all free tiles
CGneigh Center of gravity of all neighbor modules
MD Manhattan distance

neigh(t) A set of neighbor modules of the module t
Listg Sorted graph’s module list according their

communication volumes in descending order
Listrevivei List of selected T ileRg,i

Listfree List of free tiles
Listnew List of selected free tiles to be used

Listcandidatet List of placement candidate of module t
loc(x) Location of the tile x

If the number of module with IP type t needed by the co-processor is k, the weighting of

each tile configured to t is k. If no revivable tiles could be used for the placement (e.g. the

system has just started up), CGbase is equal to CG of all free tiles.

The number of revivable tiles of a certain IP type can be higher than, equal to or lower than

those needed by the co-processor being placed. If there are more revivable tiles of a certain

IP type than needed, the revivable tiles which are closer to CGbase would be selected. The

availability of the revivable tiles may not fulfill the needs of the co-processor. Therefore, some

idle tiles have to be reconfigured to the desired IP types. Tokens (Rtoken) are given to those

IP types for claiming reconfigurable free tiles at the placement stage.

Some on-chip free tiles are configured to the desired IP types for the co-processor. CGrevive

which is the center of gravity of all selected revivable tiles in the previous stage is computed.

The required number of free on-chip tiles is selected. Those selected tiles are the tiles which

are closest to CGrevive. At the placement stage, each module is placed into the chosen tiles.

The modules are stored in a list Listg. These modules in Listg are sorted according to their

communication volume in descending order. The module with the highest communication

volume is placed first. Modules are placed either on the revived tiles or on the free tiles (if

www.manaraa.com

110

RToken is available). If the mapping module’s neighbors are mapped, a weighted CGneigh

of those mapped neighbors is computed based on the communication volume between the

mapping module and those neighbors. If none of its neighbors is mapped, CGneigh will equal

CG of its neighbors’ IPtype revivable tile and free tiles. A Module will be placed on the

available tile which is close to CGneigh. Finally, bitstream sources are selected to reconfigure

the tiles. As the router has native multicast support [25], the bitstream for all modules with

the same IP type is fetched from a single source. Bitstream is fetched from an on-chip tile if

there exists a tile with a cached version of the required bitstream. Otherwise, the bitstream

will be fetched from the I/O. CGListreconfigure
of tiles requiring the same type of bitstream is

computed. The bitstream source is the tile closest to CGListreconfigure
and with the required

bitstream.

8.3 Experiments

8.3.1 Experimental Setup

A co-processing request queue for the video system is randomly generated. The configura-

tion bitstream size of each CLB group is 2.2 Mbits which equals 18,000 128-bit packets. The

runtime (RT) and configuration time (CT) are measured in cycles and the energy is measured

in nJ . Configuration time is the elapsed time interval between the system issuing reconfigura-

tion signals until all tile reconfiguration is complete. Runtime is the time interval from when

all tile reconfiguration is complete to when all data is processed. Note that runtime excludes

configuration time.

The simulation parameters are shown in Table 8.2.

8.3.1.1 Comparison Between Random Placement and CG Placement

In this experiment, placement qualities of random co-processor placement algorithm and

basic co-processor placement algorithm proposed in this chapter are compared. The result is

shown in Table 8.3. The average router energy consumption per co-processing, the number of

co-processor executions within the simulation time and the average co-processors runtime are

www.manaraa.com

111

Table 8.2 Baseline simulation parameters

Grid Size 20× 20

Video System Simulation Cycles 20, 000, 000

Num. Unicast Virtual Channels on each port 1

Num. Multicast Virtual Channels on each port 2

Num. Samples 5

Flit Width 128− bit

Num. of Jobs Request/Co-processor 2000

Path-Based Adaptive Routing observation window 5× 5

recorded. The system using basic placement algorithm consumes 16% less data router energy

than random placement algorithm. Basic placement algorithm allows co-processors to run 6%

faster and complete 10% more co-processor executions than random placement algorithm.

Table 8.3 Average Bitstream and Data Network Energy per Co-processing

Placement Random Basic

#Exec. 1204 1325

Avg. RT 568135 533439

Avg. Co-processor Data Energy 141226 nJ 117979 nJ

8.3.1.2 Comparison Between Reviving Tiles and not Reviving Tiles

The goal of reviving a tile is to reduce the tile configuration time and router configuration

energy. In fact, an algorithm without searching for revivable tiles has its own advantages.

Table 8.4 compares the number of executions, average co-processing runtime and average co-

processor configuration time between revival (R) algorithm and non-revival (NR) algorithm.

Reviving configured tiles reduce co-processor configuration time. Co-processing runtime is also

reduced because of the decreased network load. As data packets and configuration bitstream

packets share the same network, data packets benefit from lower traffic congestion. As a result,

the number of co-processor executions during the same simulation cycles is higher in revival (R)

algorithm than in non-revival (NR) algorithm. Table 8.5 shows the data and the configuration

www.manaraa.com

112

Table 8.4 Comparison between non-reviving (NR) and reviving (R) the

pre-existing tiles

Acc. #Exec. Avg. RT (NR/R) Avg. CT (NR/R)

M4EB 197/210 763549/702158 47335/31989

M4EV 184/202 716915/697708 51909/33407

M2E 212/243 692512/620156 51997/37402

M4DB 215/241 336451/307686 48734/37437

M4DV 185/214 333652/303519 48593/38963

M2D 211/241 621426/564318 48237/35412

bitstream energy consumptions per executed co-processor of both revival algorithm and non-

revival algorithm. Although the revival algorithm can reduce the configuration bitstream

energy consumption, it does increase the data energy consumption. It indicates that the co-

processor modules placed using revival algorithm are not located as close as those being placed

using non-revival algorithm. Non-Revival algorithm leads to higher placement quality because

it has more flexibility in tile selections. The revival algorithm is forced to use the already

configured tiles which might be located far away. If the amount of data to be processed by the

co-processor is large, the non-revival algorithm is better in reducing energy consumption.

Table 8.5 Placement Comparison

Algorithms Conf. Bitstream Energy Data Energy

Revival 113298 nJ 9492 nJ

Non-Revival 92434 nJ 23884 nJ

8.3.1.3 Tile Idling

If the system waits to service the co-processing request until the chip has enough CLB

groups, the placement quality is usually low. It is because the modules can only be placed

on a limited number of free tiles regardless of how far they are separated. It results in high

data network energy consumption. Leaving some tiles idle increases the flexibility of the CLB

Groups selection. It leads to a high quality placement.

www.manaraa.com

113

Table 8.6 shows the effects of idling the CLB group on the number of co-processing execu-

tions, average co-processor runtime and router energy consumption of the data packet using

no-reviving algorithm.

The router energy consumption of data packets decreases when the number of idle tiles

increases because the co-processor modules are placed close to each other. The number of

co-processor executions decreases when the number of idle tiles increases because the tiles are

not being utilized largely. The average co-processor runtime decreases when the number of

idle tiles increases because the network is less congested.

Table 8.6 Idle Tiles Result

#Idle Tiles #Exec. Avg. RT Data Energy

0 1204 576684 92434 nJ

10 1201 573902 89371 nJ

20 1203 557800 84798 nJ

30 1182 546649 81029 nJ

40 1164 543187 79665 nJ

50 1145 539223 78183 nJ

60 1113 536646 77688 nJ

70 1086 535033 76508 nJ

80 1051 533943 76490 nJ

www.manaraa.com

114

CHAPTER 9. A Co-processor Placer For The Sharable CLB Groups

9.1 Motivation

In Chapter 8, each CLB Group is limited to support only one module in the co-processor.

Within each co-processor, the module with the highest processing time is the bottleneck module

of the co-processor. It is a key factor in determining the co-processor’s throughput. This

bottleneck module creates idle time on other modules within the same co-processor. The

bottleneck module’s ancestors have to wait for the bottleneck module to accept the newly

generated data while the descendants have to wait for the data generated by the bottleneck

module. In this chapter, an algorithm is proposed to allow different co-processors to share a

CLB Group to increase the CLB Group utilization rate and increase the throughput of the

system.

9.2 CLB Group Sharing

To support CLB Group sharing, additional buffer sets are added to the CLB Groups (Fig.

9.1). Each co-processor module mapped to the CLB Group occupies one buffer set.

Fig. 9.2 shows an example of module sharing. Two co-processors are to be mapped onto

the chip. Module lib1 processing time (PT) is ten cycles. Module lib2 processing time is two

cycles. Module lib3 processing time is twelve cycles. Without CLB Group sharing, six CLB

Groups are needed. If each CLB Group can be shared by two co-processors, two logical lib1

modules can be mapped into the same physical CLB Group (Tile 1,1)), two logical lib2 modules

can be mapped into the same physical CLB Group (Tile 1,2)) and two logical lib3 modules can

be mapped into the same physical CLB Group (Tile 2,2)). Therefore, these two co-processors

can be supported by three CLB Groups.

www.manaraa.com

115

N
e
tw
o
rk

In
te
rf
a
c
e

Buffer In

var1 var2 var3 var4 var5 var6

Buffer Out

var1 var2 var3 var4 var5 var6

Address Table

invar1

Address

invar2

invar3

invar4

invar5

invar6

outvar1

Address

outvar2

outvar3

outvar4

outvar5

outvar6

CLBsBlock RAM

Set 1

Set 2 Set 3 Set 4

...

Figure 9.1 Sharable CLB Group Architecture

9.3 Full Tile Sharing and Bottleneck Aware Sharing

In this section, two different ways to share a CLB Group are discussed. They are Full Tile

Sharing and Bottleneck Aware Sharing.

The basic co-processor placer in Chapter 8 is modified to support CLB Group sharing. The

name of this modified algorithm is Sharable CLB Group Placer (SCGP). In SCGP, revivable

tile is considered to be a sharable tile with all the buffer sets available. At the first stage of

the algorithm, the number of available IP slots (buffer sets) for sharing is found. Each tile

can be shared by at most MaxS IP modules due to the limited number of buffer sets. In Full

Tile Sharing (FTS), a module is shared as long as it has free buffer sets. The drawback of

FTS is that it could slow down the co-processor greatly due to bottleneck module sharing.

When the co-processor’s bottleneck module is shared, the co-processor throughput decreases.

In the example shown in Fig. 9.2, when all three modules are shared by the two co-processors,

the lib1, lib2 and lib3 module processing time double. The bottleneck processing time of

each co-processor becomes 24. To avoid this problem, bottleneck aware sharing (BAS) is

used. (The details of BAS are shown in Algorithm 2, 3). In BAS, not all of the available

www.manaraa.com

116

lib1

lib2

lib3

lib1

lib2

lib3

Co-Processor A_1 Co-Processor A_2

datain1 datain2

dataout1 dataout2
lib1

lib2

lib3

lib1

lib3

datain1 datain2

dataout1 dataout2

Tile (1,2)

Tile (1,0)

Tile (1,3)
Tile (2,2)

PT=10

PT=2

PT=12

PT=10

PT=12

PT=10

PT=2

PT=12

PT=10

PT=2+2=4

PT=12

Fu
ll S
ha
rin
g

Tile (1,1)

Bottleneck

Aware Sharing

lib1

lib2

lib3

datain1

dataout1

Tile (2,2)

PT=10+10=20

PT=2+2=4

PT=12+12=24

Tile (1,1)

datain2

dataout2

(a)

(b)

Tile (1,2)

Co-Processor A_1 Co-Processor A_2

Co-Processor A_1 Co-Processor A_2

Figure 9.2 Module Sharing (a) Two Co-processor Graphs, (b) Two

Mapped Co-processor Graphs

buffer sets are used to share the CLB Group. Instead, a CLB Group will be shared only if

the additional sharing does not affect the bottleneck of the co-processors which are currently

sharing the CLB Group. When the number of CLB Group sharers increases by one, the tile

(T) processing time (PT (T)) will increase by the processing time (PT (i)) of the IPtype i. To

avoid increasing the bottleneck processing time of the co-processors acc which are currently

occupying the CLB Group, the placer can only share the CLB Group to (BN(acc)− PT (T))

÷ PT (i) additional modules. In the example, the lib2 CLB Group is shared. Even though the

lib2 CLB Group’s average processing time is doubled, the new processing time is lower than

the original bottleneck processing time. Therefore, no new bottlenecks are created for the

co-processors. The lib1 CLB Group will not be shared even though it is not the co-processor

bottleneck because if the lib1 CLB Group is shared, lib1module will become the new bottleneck

for both co-processors and the processing time will be 20. Similar to the previous algorithm,

a module can either be placed on a free CLB Group or already configured CLB Group with

its desired IP type. After a module has been placed on the tile that needs reconfiguration, the

www.manaraa.com

117

remaining slots (buffer sets) will be added to the ListshareIPtype(t)
for sharing.

Table 9.1 Notation

n Number of tiles
tg Number of modules in the graph g
IPg Set of IPtype required by the graph g

|IPg,i| Number of IPtype i required by graph g
T ileRg,i Revivable tile configured as IPtype i which

is required by the graph g
T ileSg,i Sharable tile configured as IPtype i which

is required by the graph g
CG Ri Center of gravity of all T ileRg,i

CGproposed Proposed center of gravity for the placement
CGrevive Center of gravity of all selected revivable tiles
CGfree Center of gravity of all free tiles
CGshare Center of gravity of selected sharable slots
CGneigh Center of gravity of all neighbor modules
MD Manhattan distance

neigh(t) A set of neighbor modules of module t
Listg Sorted graph’s module list according their

communication volumes in descending order
Listrevivei List of selected T ileRg,i

Listfree List of free tiles
Listnew List of selected free tiles to be used

Listcandidatet List of placement candidate of module t
Listsharei List of selected IP i slots
MaxS Number of buffer sets in a CLB Group
Si Set of sharable slots of IP i

loc(x) Location of tile or slot x

9.4 Experiments

9.4.1 Experimental Setup

A co-processing request queue for the video system is randomly generated. The configura-

tion bitstream size of each CLB group is 2.2 Mbits which equals 18,000 128-bit packets. The

runtime (RT) and configuration time (CT) are measured in cycles and the energy is measured

in nJ . Configuration time is the elapsed time interval between the system issuing reconfigura-

tion signals until all tile reconfiguration is complete. Runtime is the time interval from when

all tile reconfiguration is complete to when all data is processed. Note that runtime excludes

configuration time.

The simulation parameters are shown in Table 9.2. The result is shown in Table 9.3 and

Table 9.4.

www.manaraa.com

118

1: //Sharable Tiles selection

2: for all i ∈ IPg do

3: for all tile Ti,j ∈ T ileSg,i do

4: #shareslotTi,j
=MaxS ;

5: for all Ti,j’s sharer graph g do

6: if (BN(acc)-PT(Ti,j)) div PT(i) < Ti,j’s slotleft then

7: #shareslotTi,j
=(BN(g)-PT(Ti,j)) div PT(i));

8: end if

9: end for

10: Add Ti,j’s sharable slots to Si;

11: end for

12: end for

13: if
∑

i∈IPg
|Si| > 0 then

14: CGbase =

∑
i∈IPg

∑
s∈Si

loc(s)
∑

i∈IPg
|Si|

;

15: else

16: CGbase = CGfree;

17: end if

18: //Sharable Tiles Selection

19: #tiles needed=0;

20: for all i ∈ IPg,i do

21: if |IPg,i| ≥ |Si| then

22: Move all Si to Listshare(i);

23: Rtoken(i)=⌈(|IPg,i| − |Si|) div (BN(g) div PT(i))⌉;

24: #tiles needed+=Rtoken(i);

25: else

26: Sort s ∈ Si according to their MDs from the CGbase in ascending order;

27: Move the first |IPg,i| s ∈ Si from Si to Listsharei ;

28: end if

29: end for

30: if #tiles needed > |T ileFree| then

31: return ”Not enough free tile”;

32: end if

33: //Reconfigurable Tile Selection

34: CGshare=

∑
i∈IPg

∑
s∈Listsharei

loc(s)
∑

i∈IPg
|Listsharei |

;

35: Sort Listfree according to their MDs from the CGshare;

36: Move the first #tiles needed tiles from Listfree to Listnew;

Algorithm 2 Bottleneck Aware Sharing Placement Algorithm for Sharable

CLB Groups Part 1

www.manaraa.com

119

1: //Place Graph’s Modules

2: for all Module t ∈ Listg do

3: if RToken(IP type(t))! = 0 then

4: Listcandidatet=Listnew+ListreviveIPtype(t)
;

5: else

6: Listcandidatet=ListreviveIPtype(t)
;

7: end if

8: if Some t’s neighbor modules are mapped then

9: CGneigh=
∑

m∈mapped neigh(t) loc(m)

|mapped neigh(t)| ;

10: else

11: CGneigh=
∑

m∈neigh(t) CGIPtype(m)

|neigh(t)| where CGIP type(m)=

∑
p∈Listcandidatem

loc(p)

|Listcandidatem | ;

12: end if

13: Map t on the tile k ∈ Listchoices with the smallest MD from CGneigh;

14: if k ∈ Listnew then

15: Add k to ListreconfigureIPtype(t)
;

16: Add ((BN(g) div PT(i))-1) entries of k to ListshareIPtype(t)
;

17: Rtoken(IP type(t))−−;

18: end if

19: Remove k from either Listnew or ListshareIPtype(t)
;

20: end for

21: //Bitstream Source Selection

22: for all i ∈ IP g do

23: if Listreconfigurei!=NULL then

24: Compute CGListreconfigurei

25: if ∃ on-chip bitstream then

26: Srcbitstream=T ile Rg,i with the smallest MD from CGListreconfigurei
;

27: else

28: Srcbitstream=I/O close to CGListreconfigurei
y;

29: end if

30: end if

31: end for

Algorithm 3 Bottleneck Aware Sharing Placement Algorithm for Sharable

CLB Groups Part 2

www.manaraa.com

120

Table 9.2 Baseline simulation parameters

Grid Size 20× 20

Video System Simulation Cycles 20, 000, 000

Num. Unicast Virtual Channels on each port 1

Num. Multicast Virtual Channels on each port 2

Num. Samples 5

Flit Width 128− bit

Num. of Jobs Request/Co-processor 2000

Path-Based Adaptive Routing observation window 5× 5

Num. CLB Group Buffer Sets 1− 4

Sharing Methods FTS and BAS

Table 9.3 Full Tile Sharing (FTS)

buffer sets 1 2 3 4

Co-processing. Exec. 1325 1671 1787 1806

Avg. RT 533439 814311 1140823 1435264

Data Energy/Co-processing. 117979 156761 154981 153398

Bitstream Energy/Co-processing. 9473 2676 1682 1266

Avg. CLB Group active cycles 5564423 6628319 7012392 7093083

Avg. IO active cycles 2232097 2810802 3052118 3118726

Table 9.4 Bottleneck Aware Sharing (BAS)

buffer sets 1 2 3 4

Co-processing. Exec. 1325 1852 2094 2205

Avg. RT 533439 600098 660437 671230

Data Energy/Co-processing 117979 138597 138113 136026

Bitstream Energy/Co-processing 9473 4135 3290 2989

Avg. CLB Group active cycles 5564423 7501767 8447646 8882855

Avg. IO active cycles 2232097 3056009 3476610 3647329

www.manaraa.com

121

9.4.2 Number of Sharers

In both FTS and BAS, the number of co-processor executions increases as the number

of CLB Group buffer sets increases. The CLB Group and I/O also become more active.

The router energy consumed by the configuration bitstream per co-processor execution de-

creases because CLB Group module sharing decreases the reconfiguration needs. The router

energy consumed by the data packets increases. It implies reduced placement quality. The

co-processor runtime increases because more co-processors are running on the system at the

same time. The increased number of packets traversed between the modules increases data

packet latency.

9.4.3 Comparison between Full Tile Sharing (FTS) and Bottleneck Aware Shar-

ing (BAS)

Table 9.3 and Table 9.4 show that BAS has higher number of co-processor executions

than FTS. The co-processor runtime in BAS increases because more co-processors are running

on the system at the same time. The increased number of packets traversed between the

modules increases data packet latency. This increase is smaller than FTS because BAS avoids

bottleneck module sharing. The increases in the average CLB Group active cycles and the

average I/O active cycles indicate that BAS leads to a more effective use of the CLB Groups

and the I/Os. The router energy of the configuration bitstream in the system using BAS

is higher than FTS. It is because BAS performs less aggressive sharing by sharing the non-

bottleneck modules only. Therefore, the CLB Group chosen by BAS are more distant.

www.manaraa.com

122

CHAPTER 10. Polymorphic Modules Placement

10.1 Motivation

FPGA can be configured as a specific module such as Discrete Cosine Transform (DCT)

module or Advanced Encryption Standard (AES) module to speed up a specific function. It can

also be configured as a soft microprocessor, e.g. Xilinx Microblaze, to handle a broad range of

functions. The maturity of C-to-HDL technology allows code written in C to be translated into

binary image for the soft microprocessor and FPGA bitstream for FPGA fabric. Therefore, the

future on-chip system can choose a module running in either software mode or hardware mode

to support a co-processor. Modules running in software mode usually provide lower throughput

and consume more energy compared with the modules running in hardware mode. However,

when the co-processor’s expected runtime is short and there exists a configured microprocessor

on the chip, running the modules in software mode allows the co-processor to start sooner

without waiting for the tile reconfiguration. The module is ready to support the co-processor

once the module instructions arrive at the soft processor L1 cache (configured by the block

RAM). This characteristic allows the co-processor to complete its execution in a short time.

10.2 Throughput Expectation

The co-processor throughput (Tput) depends on three factors:

1. The number of tiles waiting to be configured (Nc)

2. The number of jobs to be processed (Nj)

3. The bottleneck of the data flow graph (Tb)

www.manaraa.com

123

When an on-chip system runs a co-processor, some selected CLB groups are configured

to support the co-processor’s modules. The reconfiguration time R is closely related to the

number of tiles waiting to be configured. The expected reconfiguration time E(R) is a function

of the number of tiles waiting to be reconfigured (Nc). E(R) = f(Nc) where f(Nc) can be

obtained by profiling.

The co-processor throughput Tput can be modeled by

Tput = (f(Nc) + Tb × (Nj))/Nj = f(Nc)/Nj + Tb.

If the number of jobs to be processed by the co-processor is high, reconfiguration time can be

ignored. The throughput is determined by the bottleneck of the co-processor only. Therefore,

mapping the co-processor’s bottleneck module in hardware mode can maximize the co-processor

throughput. Note that the non-bottleneck modules in this co-processor could be mapped into

a soft processor as long as they do not become the new bottleneck. If the number of jobs

to be processed is small, reconfiguration time affects the co-processor’s throughput. In this

case, mapping the co-processor’s bottleneck in software mode may increase the throughput by

saving the long reconfiguration time.

A polymorphic co-processor can run in multiple modes. Each mode has different combina-

tion of hardware and software modules. It allows the system to choose the most suitable mode

to execute in.

Polymorphic placement algorithm is very similar to the Algorithm 2 and 3 in Chapter 9.

The main difference is that when the polymorphic placer places a polymorphic co-processor,

it tries to map the modules of each co-processor mode to the CLB Groups. The mode with

the highest expected throughput E(Tput) will be executed.

10.3 Experiment

In this section, a new soft processor IP is added to the system. This IP supports any

modules running in software mode. The processing time of the module running in soft processor

mode is 2 times longer than the module running in hardware mode.

A co-processing request queue for the video system is randomly generated. The placer

www.manaraa.com

124

places the video system into the on-chip FPGA system polymorphically. The configuration

bitstream size of each CLB group is 2.2 Mbits which equals 18,000 128-bit packets. The runtime

(RT) and configuration time (CT) are measured in cycles and the energy is measured in nJ .

Configuration time is the elapsed time interval between the system issuing reconfiguration

signals until all tile reconfiguration is complete. Runtime is the time interval from when all

tile reconfiguration is complete to when all data is processed. Note that runtime excludes

configuration time.

The simulation parameters are shown in Table 10.1. Each co-processing request has K

data to be processed. K is a random number which ranges from 1 to Maxd where Maxd is

200, 500, 1000. For each parameter Maxd, we run the experiment in polymorphic mode (Poly)

and hardware only mode (Hw). The results are shown in Table 10.2.

Table 10.1 Polymorphic On-Chip System Simulation Parameters

Grid Size 20× 20

Video System Simulation Cycles 20, 000, 000

Num. Unicast Virtual Channels on each port 1

Num. Multicast Virtual Channels on each port 2

Num. Samples 5

Flit Width 128− bit

Max. Num. of Jobs Request/Co-processor 200, 500, 1000

Path-Based Adaptive Routing observation window 5× 5

Num. CLB Group Buffer Sets 4

Sharing Methods BAS

The introduction of soft processor IP increases system throughput. This increase is more

significant when Maxd is small. The placer prefers mapping some modules in software mode to

save configuration time to increase the throughput if the chip has configured a soft processor.

When Maxd = 200, 44% of the co-processors use soft processor modules. The throughput

advantage diminishes when Maxd increases because the effect of the reconfiguration time on

the throughput becomes smaller. Running IP in hardware mode can provide higher throughput.

The introduction of soft processor decreases the number of CLB Group reconfigurations

www.manaraa.com

125

because soft processor is capable of handling a broad range of IP functions. The average con-

figuration time per co-processor execution and the average router energy for the configuration

bitstream per co-processor execution, hence, decrease.

The existence of soft processor does not affect the placement quality. The average data

energy per co-processor execution stays the same.

Co-processors using some soft processor mapped modules run slower than co-processors

using all hard IPs because the IP running in software mode has higher processing time than

in hardware mode.

Table 10.2 Polymorphic Module Placement

Maxd+Mode 200Hw 200Poly 500Hw 500Poly 1000Hw 1000Poly

co-processing 16128 20385 9415 10521 5565 5751

data processed 1611326 2053698 2339892 2651544 2795923 2875082

All HW Mapping 16128 11353 9415 9653 5565 5472

Some SW Mapping 0 9082 0 868 0 279

configuration 9212 4122 4980 3705 2341 1977

avg. conf. time/co-processing 10893 5095 11134 8166 10223 8544

avg. conf. bitstream 1379 526 1253 813 975 815
energy/co-processing

avg. data energy/co-processing 6764 6748 16815 16307 33021 33245

avg RT/data. (All HW) 613 510 432 398 366 370

avg RT/data. (Some SW) NIL 734 NIL 455 NIL 541

www.manaraa.com

126

CHAPTER 11. Conclusions

Future on-chip system will contain a large number of IPs. The on-chip system needs a high

bandwidth 2D mesh on-chip network to provide the communication between these modules.

In this thesis, we proposed an advanced router to improve the on-chip network performance.

The router supports adaptive routing, unary and binary multicast code and on-the-fly code

transformation to increase the network throughput and reduces the on-chip router energy

consumption. A novel approach is proposed to make the router free from multicast deadlock.

On-chip FPGA system is one of the on-chip systems which requires a 2D mesh network.

In this system, modules location affects system performance. In the second part of the thesis,

we propose an algorithm to place co-processor modules as close as possible. Building on the

algorithm, we develop two algorithms to support CLB Group sharing and to support a Poly-

morphic Co-processor. The advanced router and the algorithms can increase the throughput

and reduce the network energy consumption of the on-chip system.

www.manaraa.com

127

Bibliography

[1] Teraflops research chip, February 2007. http://www.intel.com/pressroom/kits/

Teraflops/index.htm.

[2] Hideharu Amano. A survey on dynamically reconfigurable processors. IEICE Transactions

on Communications, E-89-B(12):3179–3187, 2006.

[3] Giuseppe Ascia, Vincenzo Catania, Maurizio Palesi, and Davide Patti. Implementation

and analysis of a new selection strategy for adaptive routing in networks-on-chip. IEEE

Trans. Comput., 57(6):809–820, 2008.

[4] J. Bainbridge and S. Furber. Chain: a delay-insensitive chip area interconnect. Micro,

IEEE, 22(5):16–23, Sep/Oct 2002.

[5] T. Bjerregaard and J. Sparso. A router architecture for connection-oriented service guar-

antees in the mango clockless network-on-chip. Design, Automation and Test in Europe,

2005. Proceedings, pages 1226–1231 Vol. 2, March 2005.

[6] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of

network-on-chip. ACM Comput. Surv., 38(1):1, 2006.

[7] Eylon Caspi, Michael Chu, Randy Huang, Joseph Yeh, John Wawrzynek, and Andre

DeHon. Stream computations organized for reconfigurable execution (SCORE). In FPL,

pages 605–614, 2000.

[8] Chi-Ming Chiang and Lionel M. Ni. Multi-address encoding for multicast. In PCRCW

’94: Proceedings of the First International Workshop on Parallel Computer Routing and

Communication, pages 146–160, London, UK, 1994. Springer-Verlag.

www.manaraa.com

128

[9] Andrew A. Chien and Jae H. Kim. Planar-adaptive routing: low-cost adaptive networks

for multiprocessors. J. ACM, 42(1):91–123, 1995.

[10] Ge-Ming Chiu. The odd-even turn model for adaptive routing. IEEE Trans. Parallel

Distrib. Syst., 11(7):729–738, 2000.

[11] Pat Conway and Bill Hughes. The amd opteron northbridge architecture. IEEE Micro,

27(2):10–21, 2007.

[12] Matteo Dall’Osso, Gianluca Biccari, Luca Giovannini, Davide Bertozzi, and Luca Benini.

xpipes: a latency insensitive parameterized network-on-chip architecture for multi-

processor socs. In ICCD ’03: Proceedings of the 21st International Conference on Com-

puter Design, page 536, Washington, DC, USA, 2003. IEEE Computer Society.

[13] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor intercon-

nection networks. IEEE Trans. Comput., 36(5):547–553, 1987.

[14] William Dally and Brian Towles. Principles and Practices of Interconnection Networks.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[15] William J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE

Trans. Comput., 39(6):775–785, 1990.

[16] International Technology Roadmap for Semiconductors. Executive Summary.

http://www.itrs.net/Links/2007ITRS/, 2007 Edition.

[17] Mark Gebhart, Bertrand A. Maher, Katherine E. Coons, Jeff Diamond, Paul Gratz, Mario

Marino, Nitya Ranganathan, Behnam Robatmili, Aaron Smith, James Burrill, StephenW.

Keckler, Doug Burger, and Kathryn S. McKinley. An evaluation of the trips computer

system. SIGPLAN Not., 44(3):1–12, 2009.

[18] Christopher J. Glass and Lionel M. Ni. The turn model for adaptive routing. SIGARCH

Comput. Archit. News, 20(2):278–287, 1992.

www.manaraa.com

129

[19] K. Goossens, J. Van Meerbergen, A. Peeters, and P. Wielage. Networks on silicon: Com-

bining best-effort and guaranteed services. In In Proc. Design, Automation and Test in

Europe Conference and Exhibition (DATE), pages 423–425, 2002.

[20] P. Gratz, B. Grot, and S.W. Keckler. Regional congestion awareness for load balance in

networks-on-chip. High Performance Computer Architecture, 2008. HPCA 2008. IEEE

14th International Symposium on, pages 203–214, Feb. 2008.

[21] Pierre Guerrier and Alain Greiner. A generic architecture for on-chip packet-switched

interconnections. In DATE ’00: Proceedings of the conference on Design, automation and

test in Europe, pages 250–256, New York, NY, USA, 2000. ACM.

[22] Richard Herveille and Andy Henson. Video compression systems.

http://www.opencores.org.

[23] D. Kanter. The common system interface: Intel’s future interconnect.

http://www.realworldtech.com/page.cfm? ArticleID=RWT082807020032.

[24] Faraydon Karim, Anh Nguyen, and Sujit Dey. An interconnect architecture for networking

systems on chips. IEEE Micro, 22(5):36–45, 2002.

[25] Ka-Ming Keung and Akhilesh Tyagi. Breaking adaptive multicast deadlock by virtual

channel address/data fifo decoupling. In NoCArc ’09: Proceedings of the 2nd International

Workshop on Network on Chip Architectures, pages 11–16, New York, NY, USA, 2009.

ACM.

[26] Jongman Kim, Chrysostomos Nicopoulos, and Dongkook Park. A gracefully degrading

and energy-efficient modular router architecture for on-chip networks. SIGARCH Comput.

Archit. News, 34(2):4–15, 2006.

[27] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,

and A. Hemani. A network on chip architecture and design methodology. VLSI, 2002.

Proceedings. IEEE Computer Society Annual Symposium on, pages 105–112, 2002.

www.manaraa.com

130

[28] Shashi Kumar, Axel Jantsch, Mikael Millberg, Johny Oberg, Juha-Pekka Soininen, Martti

Forsell, Kari Tiensyrja, and Ahmed Hemani. A network on chip architecture and design

methodology. isvlsi, 00:0117, 2002.

[29] Ming Li, Qing-An Zeng, and Wen-Ben Jone. Dyxy: a proximity congestion-aware

deadlock-free dynamic routing method for network on chip. In DAC ’06: Proceedings

of the 43rd annual Design Automation Conference, pages 849–852, New York, NY, USA,

2006. ACM.

[30] X. Lin, P. K. McKinley, and L. M. Ni. Deadlock-free multicast wormhole routing in 2-d

mesh multicomputers. IEEE Trans. Parallel Distrib. Syst., 5(8):793–804, 1994.

[31] Roman Lysecky, Greg Stitt, and Frank Vahid. Warp processors. ACM Trans. Des. Autom.

Electron. Syst., 11(3):659–681, 2006.

[32] Srinivasan Murali and Giovanni De Micheli. Sunmap: a tool for automatic topology

selection and generation for nocs. In DAC ’04: Proceedings of the 41st annual conference

on Design automation, pages 914–919, New York, NY, USA, 2004. ACM.

[33] P.P. Pande, C. Grecu, A. Ivanov, and R. Saleh. Design of a switch for network on

chip applications. In Circuits and Systems, 2003. ISCAS ’03. Proceedings of the 2003

International Symposium on, volume 5, pages V–217–V–220 vol.5, May 2003.

[34] Li-Shiuan Peh and W.J. Dally. A delay model for router microarchitectures. Micro, IEEE,

21(1):26–34, Jan/Feb 2001.

[35] Faizal Samman, Thomas Hollstein, and Manfred Glesner. Planar adaptive router mi-

croarchitecture for tree-based multicast network-on-chip. In NoCArc ’08: International

Workshop on Network on Chip Architectures, 2008.

[36] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk

Huh, Doug Burger, StephenW. Keckler, and Charles R. Moore. Exploiting ilp, tlp, and dlp

with the polymorphous trips architecture. SIGARCH Comput. Archit. News, 31(2):422–

433, 2003.

www.manaraa.com

131

[37] Karin Strauss, Xiaowei Shen, and Josep Torrellas. Uncorq: Unconstrained snoop request

delivery in embedded-ring multiprocessors. InMICRO ’07: Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 327–342, Washington,

DC, USA, 2007. IEEE Computer Society.

[38] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. Wavescalar. In

MICRO 36: Proceedings of the 36th annual IEEE/ACM International Symposium on

Microarchitecture, page 291, Washington, DC, USA, 2003. IEEE Computer Society.

[39] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew Putnam,

Ken Michelson, Mark Oskin, and Susan J. Eggers. The wavescalar architecture. ACM

Trans. Comput. Syst., 25(2):4, 2007.

[40] Michael Bedford Taylor, Walter Lee, Saman Amarasinghe, and Anant Agarwal. Scalar

operand networks: On-chip interconnect for ilp in partitioned architectures. In HPCA

’03: Proceedings of the 9th International Symposium on High-Performance Computer

Architecture, page 341, Washington, DC, USA, 2003. IEEE Computer Society.

	2010
	A study of on-chip FPGA system with 2D mesh network
	Ka-ming Keung
	Recommended Citation

	thesis.dvi

